Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa

[1]  S. Remold,et al.  Pseudomonas putida and Pseudomonas fluorescens Species Group Recovery from Human Homes Varies Seasonally and by Environment , 2015, PloS one.

[2]  A. Moya,et al.  Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. , 2015, FEMS microbiology ecology.

[3]  S. Bennett,et al.  RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi , 2015, Front. Microbiol..

[4]  F. Veas,et al.  Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint , 2015, PloS one.

[5]  G. Dimopoulos,et al.  Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities , 2014, PLoS pathogens.

[6]  Rebecca M. Johnson,et al.  Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes , 2014, Proceedings of the National Academy of Sciences.

[7]  L. Kramer,et al.  Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex tarsalis , 2014, PLoS neglected tropical diseases.

[8]  Mark R. Brown,et al.  Mosquitoes rely on their gut microbiota for development , 2014, Molecular ecology.

[9]  R. Lampman,et al.  Land use patterns and the risk of West Nile virus transmission in central Illinois. , 2014, Vector borne and zoonotic diseases.

[10]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[11]  B. D. Parashar,et al.  Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India , 2013, PloS one.

[12]  Michael W. Hall,et al.  Bacterial Communities Associated with Culex Mosquito Larvae and Two Emergent Aquatic Plants of Bioremediation Importance , 2013, PloS one.

[13]  Guoli Zhou,et al.  Replacing a Native Wolbachia with a Novel Strain Results in an Increase in Endosymbiont Load and Resistance to Dengue Virus in a Mosquito Vector , 2013, PLoS neglected tropical diseases.

[14]  P. Mavingui,et al.  Diversity and function of bacterial microbiota in the mosquito holobiont , 2013, Parasites & Vectors.

[15]  Guoli Zhou,et al.  Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection , 2013, Science.

[16]  Nicholas A. Bokulich,et al.  Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing , 2012, Nature Methods.

[17]  S. Epis,et al.  Symbiotic control of mosquito borne disease , 2012, Pathogens and global health.

[18]  B. Kay,et al.  Effect of Wolbachia on Replication of West Nile Virus in a Mosquito Cell Line and Adult Mosquitoes , 2012, Journal of Virology.

[19]  E. Muturi,et al.  Influence of Leaf Detritus Type on Production and Longevity of Container-Breeding Mosquitoes , 2012, Environmental entomology.

[20]  C. Mbogo,et al.  Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya , 2012, Molecular ecology.

[21]  A. Apte-Deshpande,et al.  Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus , 2012, PloS one.

[22]  A. Ghosh,et al.  Fighting malaria with engineered symbiotic bacteria from vector mosquitoes , 2012, Proceedings of the National Academy of Sciences.

[23]  L. Bussière,et al.  Midgut bacterial dynamics in Aedes aegypti. , 2012, FEMS microbiology ecology.

[24]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[25]  A. Failloux,et al.  Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector , 2012, Molecular ecology.

[26]  R. Cordaux,et al.  Widespread Wolbachia infection in terrestrial isopods and other crustaceans , 2012, ZooKeys.

[27]  J. Pascale,et al.  Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence , 2012, PLoS neglected tropical diseases.

[28]  C. Schadt,et al.  Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. , 2012, Environmental microbiology.

[29]  A. Enayati,et al.  Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. , 2012, Acta tropica.

[30]  D. Daffonchio,et al.  Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts , 2012, BMC Microbiology.

[31]  E. Scholte,et al.  Parasites of vectors - Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands , 2011, Parasites & Vectors.

[32]  G. Favia,et al.  Identification of the Midgut Microbiota of An. stephensi and An. maculipennis for Their Application as a Paratransgenic Tool against Malaria , 2011, PloS one.

[33]  Marcus S. C. Blagrove,et al.  Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus , 2011, Proceedings of the National Academy of Sciences.

[34]  A. Raikhel,et al.  Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti , 2011, Proceedings of the National Academy of Sciences.

[35]  Ying Wang,et al.  Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya , 2011, PloS one.

[36]  S. Ritchie,et al.  The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations , 2011, Nature.

[37]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[38]  M. A. Berbert-Molina,et al.  Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.) , 2011, Parasites & Vectors.

[39]  Thomas Walker,et al.  Wolbachia and the biological control of mosquito‐borne disease , 2011, EMBO reports.

[40]  G. Dimopoulos,et al.  Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae , 2011, Science.

[41]  P. Mavingui,et al.  Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. , 2011, FEMS microbiology ecology.

[42]  Yuan Kang,et al.  Investigating the presence of Wolbachia pipientis in various mosquito species , 2011 .

[43]  Rob Knight,et al.  The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. , 2010, Environmental microbiology.

[44]  M. A. Berbert-Molina,et al.  Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. , 2010, Acta tropica.

[45]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[46]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[47]  F. Bushman,et al.  QIIME allows integration and analysis of high-throughput community sequencing data. Nat. Meth. , 2010 .

[48]  Peter A. Ryan,et al.  A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium , 2009, Cell.

[49]  D. R. Mercer,et al.  Pathogenicity of Life-Shortening Wolbachia in Aedes albopictus after Transfer from Drosophila melanogaster , 2009, Applied and Environmental Microbiology.

[50]  E. McGraw,et al.  Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti , 2009, PLoS neglected tropical diseases.

[51]  G. Dimopoulos,et al.  Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites , 2009, PLoS pathogens.

[52]  Bodil N. Cass,et al.  Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti , 2009, Science.

[53]  L. Harrington,et al.  Considerations for Accurate Identification of Adult Culex restuans (Diptera: Culicidae) in Field Studies , 2008, Journal of medical entomology.

[54]  Joon-hak Lee,et al.  Host-Feeding Patterns of Culex Mosquitoes in Relation to Trap Habitat , 2007, Emerging infectious diseases.

[55]  Thomas Walker,et al.  Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group , 2007, BMC Biology.

[56]  R. Lampman,et al.  A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America. , 2007, The American journal of tropical medicine and hygiene.

[57]  David Lampe,et al.  Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. , 2007, International journal for parasitology.

[58]  R. Novak,et al.  Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae) , 2007, Insect molecular biology.

[59]  J. Beier,et al.  Discriminative feeding behavior of Anopheles gambiae S.S on different plant species and effects on its survival, fecundity, and vector competence in a malaria endemic area of western Kenya , 2007 .

[60]  R. Lampman,et al.  Culex Population Dynamics and West Nile Virus Transmission in East-Central Illinois , 2006, Journal of the American Mosquito Control Association.

[61]  John F Anderson,et al.  Host Feeding Patterns of Culex Mosquitoes and West Nile Virus Transmission, Northeastern United States , 2006, Emerging infectious diseases.

[62]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[63]  J. Parkhill,et al.  Wolbachia variability and host effects on crossing type in Culex mosquitoes , 2005, Nature.

[64]  Jamie A. Blow,et al.  An Update on the Potential of North American Mosquitoes (Diptera: Culicidae) to Transmit West Nile Virus , 2005, Journal of medical entomology.

[65]  A. Hoerauf,et al.  Wolbachia bacterial endosymbionts of filarial nematodes. , 2005, Advances in parasitology.

[66]  J. R. Aldrich,et al.  Evaluation of five trapping systems for the surveillance of gravid mosquitoes in Prince Georges County, Maryland. , 2004, Journal of the American Mosquito Control Association.

[67]  Thomas W. Scott,et al.  An Initial Survey for Wolbachia (Rickettsiales: Rickettsiaceae) Infections in Selected California Mosquitoes (Diptera: Culicidae) , 2004, Journal of medical entomology.

[68]  W. Walton,et al.  Larval behavior of four Culex (Diptera: Culicidae) associated with treatment wetlands in the southwestern United States. , 2003, Journal of vector ecology : journal of the Society for Vector Ecology.

[69]  T. Scott,et al.  Differences in Extent of Genetic Introgression Between Sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa , 2003, Journal of medical entomology.

[70]  B. A. Harrison,et al.  Host-Feeding Habits of Culex and Other Mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with Characters and Techniques for Identification of Culex Mosquitoes , 2002, Journal of medical entomology.

[71]  D. Crowley,et al.  Microbial phyllosphere populations are more complex than previously realized , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Yoshida,et al.  Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. , 2001, Molecular and biochemical parasitology.

[73]  G. Hurst,et al.  Wolbachia pipientis: microbial manipulator of arthropod reproduction. , 1999, Annual review of microbiology.

[74]  Aaron M.Ellison PC‐ORD: Multivariate Analysis of Ecological Data , 1998, The Bulletin of the Ecological Society of America.

[75]  P. Legendre,et al.  SPECIES ASSEMBLAGES AND INDICATOR SPECIES:THE NEED FOR A FLEXIBLE ASYMMETRICAL APPROACH , 1997 .

[76]  D. White,et al.  The genus Sphingomonas: physiology and ecology. , 1996, Current opinion in biotechnology.

[77]  W. Foster,et al.  Mosquito sugar feeding and reproductive energetics. , 1995, Annual review of entomology.

[78]  M. Turelli,et al.  Rapid spread of an inherited incompatibility factor in California Drosophila , 1991, Nature.