Cauchy, infinitesimals and ghosts of departed quantifiers
暂无分享,去创建一个
Piotr Blaszczyk | Vladimir Kanovei | Thomas Mormann | Mikhail G. Katz | Karin U. Katz | David Sherry | Semen S. Kutateladze | Taras Kudryk | Jacques Bair | Robert Ely | V. Kanovei | T. Mormann | David Sherry | Valerie Henry | David M. Schaps | M. Katz | Piotr Błaszczyk | D. Schaps | J. Bair | Thomas McGaffey | R. Ely | T. Mcgaffey | T. Kudryk | V. Henry | Semen Samsonovich Kutateladze
[1] A. Robinson. Non-standard analysis , 1966 .
[2] E. Knobloch. Galileo and Leibniz: Different Approaches to Infinity , 1999 .
[3] W. Szymanowski,et al. BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .
[4] E. Hairer,et al. Introduction to Analysis of the Infinite , 2008 .
[5] M. Panza,et al. Lagrange’s theory of analytical functions and his ideal of purity of method , 2012 .
[6] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[7] David J. Stump. Ontological relativity , 2019, The Routledge Handbook of Philosophy of Relativism.
[8] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[9] N. L. Alling,et al. CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .
[10] Vladimir Kanovei,et al. Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.
[11] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[12] Mikhail G. Katz,et al. Differential geometry via infinitesimal displacements , 2014, J. Log. Anal..
[13] Piotr Blaszczyk,et al. Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[14] J. Conway. On Numbers and Games , 1976 .
[15] I. Lakatos. History of Science and Its Rational Reconstructions , 1970, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[16] R. Hartshorne. Geometry: Euclid and Beyond , 2005 .
[17] Karel Hrbacek,et al. Approaches to analysis with infinitesimals following Robinson, Nelson, and others , 2017, 1703.00425.
[18] H. K. Sørensen. Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem , 2005 .
[19] Sam Sanders. To be or not to be constructive, that is not the question , 2017, 1704.00462.
[20] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[21] Sam Sanders,et al. Reverse formalism 16 , 2017, Synthese.
[22] G. Ferraro. Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .
[23] Cauchy and the infinitely small , 1978 .
[24] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[25] Ian Mueller,et al. Philosophy of mathematics and deductive structure in Euclid's Elements , 1981 .
[26] Mary Hesse,et al. Forces and Fields: The Concept of Action at a Distance in the History of Physics , 1965 .
[27] Vladimir Kanovei,et al. Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms , 2017, 1704.07723.
[28] C. Gilain. Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .
[29] Ivor Grattan-Guinness,et al. The mathematics of the past: distinguishing its history from our heritage , 2004 .
[30] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[31] M. McKinzie,et al. Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .
[32] The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .
[33] Bar-Ilan University,et al. From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .
[34] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[35] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[36] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[37] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[38] Karin U. Katz,et al. Gregory’s Sixth Operation , 2016, The Best Writing on Mathematics 2019.
[39] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[40] Mariano Hormigón Blánquez. Cours d'analyse de l'école royale polytechnique , 2004 .
[41] Holger Teismann. Toward a More Complete List of Completeness Axioms , 2013, Am. Math. Mon..
[42] Reviel Netz,et al. The Shaping of Deduction in Greek Mathematics , 1999 .
[43] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[44] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[45] Th. Skolem,et al. Peano's Axioms and Models of Arithmetic , 1955 .
[46] Michiyo Nakane,et al. Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style , 2014 .
[47] Viktor Blåsjö. On what has been called Leibniz's rigorous foundation of infinitesimal geometry by means of Riemannian sums , 2017 .
[48] N. H. Bingham,et al. THE DEVELOPMENT OF THE FOUNDATIONS OF MATHEMATICAL ANALYSIS FROM EULER TO RIEMANN , 1972 .
[49] A. Tarski. What is Elementary Geometry , 1959 .
[50] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[51] Piotr Błaszczyk. A Purely Algebraic Proof of the Fundamental Theorem of Algebra , 2015, 1504.05609.
[52] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[53] K. Gödel,et al. Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .
[54] Leonard Euler,et al. Introduction to Analysis of the Infinite: Book I , 1988, The Mathematical Gazette.
[55] Vladimir Kanovei,et al. Is Leibnizian Calculus Embeddable in First Order Logic? , 2016, 1605.03501.
[56] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[57] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[58] Mikhail G. Katz,et al. Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .
[59] Vladimir Kanovei,et al. Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.
[60] Augustin-Louis Cauchy,et al. Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides. élastiques ou non élastiques , 2009 .
[61] Michael N. Fried. The Discipline of History and the “Modern Consensus in the Historiography of Mathematics” , 2014 .
[62] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[63] K. Borsuk,et al. Foundations of geometry : Euclidean and Bolyai-Lobachevskian geometry, projective geometry , 1960 .
[64] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[65] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[66] Paul Benacerraf,et al. What the numbers could not be , 1983 .
[67] Karin U. Katz,et al. Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.
[68] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[69] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[70] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[71] Sam Sanders,et al. The computational content of Nonstandard Analysis , 2016, CL&C.
[72] Euclid,et al. The Thirteen Books of the Elements, Vol. 2: Books 3-9 , 1956 .
[73] F. William Lawvere. Foundations and applications: axiomatization and education , 2003, Bull. Symb. Log..
[74] Marx W. Wartofsky. The Relation Between Philosophy of Science and History of Science , 1976 .
[75] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[76] Steve Russ,et al. The Mathematical Works of Bernard Bolzano , 2004 .
[77] Mariam Thalos,et al. Why is there Philosophy of Mathematics at all , 2016 .
[78] Augustin-Louis Cauchy. Oeuvres complètes: Mémoire sur la rectification des courbes et la quadrature des surfaces courbes , 2009 .
[79] A. Tarski,et al. Sur les ensembles définissables de nombres réels , 1931 .
[80] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[81] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[82] Sinkevich Galina,et al. On the history of epsilontics , 2015, 1502.06942.
[83] David Sherry,et al. Fermat’s Dilemma: Why Did He Keep Mum on Infinitesimals? And the European Theological Context , 2018, 1801.00427.
[84] Paul Benacerraf,et al. Philosophy of mathematics: What numbers could not be , 1965 .
[85] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[86] Judith V. Grabiner,et al. Is Mathematical Truth Time-Dependent? , 1974 .
[87] Patrick Suppes,et al. The axiomatic method with special reference to geometry and physics : proceedings of an international symposium held at the University of California, Berkeley, December 26, 1957-January 4, 1958 , 1959 .
[88] Karin U. Katz,et al. What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel , 2018, 1802.01972.
[89] Hermann Hankel,et al. Zur Geschichte der Mathematik in Alterthum und Mittelalter , 1874 .
[90] Nonstandard Analysis, Infinitesimals, and the History of Calculus , 2015 .
[91] Jeremy Gray. A short life of Euler , 2008 .
[92] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .