Cauchy, infinitesimals and ghosts of departed quantifiers

Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson's framework, while Leibniz's law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz's infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson's framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler's own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson's framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy's procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson's framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. Keywords: historiography; infinitesimal; Latin model; butterfly model

[1]  A. Robinson Non-standard analysis , 1966 .

[2]  E. Knobloch Galileo and Leibniz: Different Approaches to Infinity , 1999 .

[3]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[4]  E. Hairer,et al.  Introduction to Analysis of the Infinite , 2008 .

[5]  M. Panza,et al.  Lagrange’s theory of analytical functions and his ideal of purity of method , 2012 .

[6]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[7]  David J. Stump Ontological relativity , 2019, The Routledge Handbook of Philosophy of Relativism.

[8]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[9]  N. L. Alling,et al.  CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .

[10]  Vladimir Kanovei,et al.  Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.

[11]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[12]  Mikhail G. Katz,et al.  Differential geometry via infinitesimal displacements , 2014, J. Log. Anal..

[13]  Piotr Blaszczyk,et al.  Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[14]  J. Conway On Numbers and Games , 1976 .

[15]  I. Lakatos History of Science and Its Rational Reconstructions , 1970, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[16]  R. Hartshorne Geometry: Euclid and Beyond , 2005 .

[17]  Karel Hrbacek,et al.  Approaches to analysis with infinitesimals following Robinson, Nelson, and others , 2017, 1703.00425.

[18]  H. K. Sørensen Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem , 2005 .

[19]  Sam Sanders To be or not to be constructive, that is not the question , 2017, 1704.00462.

[20]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[21]  Sam Sanders,et al.  Reverse formalism 16 , 2017, Synthese.

[22]  G. Ferraro Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .

[23]  Cauchy and the infinitely small , 1978 .

[24]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[25]  Ian Mueller,et al.  Philosophy of mathematics and deductive structure in Euclid's Elements , 1981 .

[26]  Mary Hesse,et al.  Forces and Fields: The Concept of Action at a Distance in the History of Physics , 1965 .

[27]  Vladimir Kanovei,et al.  Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms , 2017, 1704.07723.

[28]  C. Gilain Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .

[29]  Ivor Grattan-Guinness,et al.  The mathematics of the past: distinguishing its history from our heritage , 2004 .

[30]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[31]  M. McKinzie,et al.  Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .

[32]  The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .

[33]  Bar-Ilan University,et al.  From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .

[34]  Patrick Riley,et al.  Leibniz's Philosophy of Logic and Language , 1973 .

[35]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[36]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[37]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[38]  Karin U. Katz,et al.  Gregory’s Sixth Operation , 2016, The Best Writing on Mathematics 2019.

[39]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[40]  Mariano Hormigón Blánquez Cours d'analyse de l'école royale polytechnique , 2004 .

[41]  Holger Teismann Toward a More Complete List of Completeness Axioms , 2013, Am. Math. Mon..

[42]  Reviel Netz,et al.  The Shaping of Deduction in Greek Mathematics , 1999 .

[43]  Vladimir Kanovei,et al.  Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.

[44]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[45]  Th. Skolem,et al.  Peano's Axioms and Models of Arithmetic , 1955 .

[46]  Michiyo Nakane,et al.  Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style , 2014 .

[47]  Viktor Blåsjö On what has been called Leibniz's rigorous foundation of infinitesimal geometry by means of Riemannian sums , 2017 .

[48]  N. H. Bingham,et al.  THE DEVELOPMENT OF THE FOUNDATIONS OF MATHEMATICAL ANALYSIS FROM EULER TO RIEMANN , 1972 .

[49]  A. Tarski What is Elementary Geometry , 1959 .

[50]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[51]  Piotr Błaszczyk A Purely Algebraic Proof of the Fundamental Theorem of Algebra , 2015, 1504.05609.

[52]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[53]  K. Gödel,et al.  Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .

[54]  Leonard Euler,et al.  Introduction to Analysis of the Infinite: Book I , 1988, The Mathematical Gazette.

[55]  Vladimir Kanovei,et al.  Is Leibnizian Calculus Embeddable in First Order Logic? , 2016, 1605.03501.

[56]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[57]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[58]  Mikhail G. Katz,et al.  Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .

[59]  Vladimir Kanovei,et al.  Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.

[60]  Augustin-Louis Cauchy,et al.  Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides. élastiques ou non élastiques , 2009 .

[61]  Michael N. Fried The Discipline of History and the “Modern Consensus in the Historiography of Mathematics” , 2014 .

[62]  A. Cauchy Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .

[63]  K. Borsuk,et al.  Foundations of geometry : Euclidean and Bolyai-Lobachevskian geometry, projective geometry , 1960 .

[64]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[65]  Eberhard Knobloch,et al.  Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.

[66]  Paul Benacerraf,et al.  What the numbers could not be , 1983 .

[67]  Karin U. Katz,et al.  Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.

[68]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[69]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[70]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[71]  Sam Sanders,et al.  The computational content of Nonstandard Analysis , 2016, CL&C.

[72]  Euclid,et al.  The Thirteen Books of the Elements, Vol. 2: Books 3-9 , 1956 .

[73]  F. William Lawvere Foundations and applications: axiomatization and education , 2003, Bull. Symb. Log..

[74]  Marx W. Wartofsky The Relation Between Philosophy of Science and History of Science , 1976 .

[75]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[76]  Steve Russ,et al.  The Mathematical Works of Bernard Bolzano , 2004 .

[77]  Mariam Thalos,et al.  Why is there Philosophy of Mathematics at all , 2016 .

[78]  Augustin-Louis Cauchy Oeuvres complètes: Mémoire sur la rectification des courbes et la quadrature des surfaces courbes , 2009 .

[79]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[80]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[81]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[82]  Sinkevich Galina,et al.  On the history of epsilontics , 2015, 1502.06942.

[83]  David Sherry,et al.  Fermat’s Dilemma: Why Did He Keep Mum on Infinitesimals? And the European Theological Context , 2018, 1801.00427.

[84]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[85]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[86]  Judith V. Grabiner,et al.  Is Mathematical Truth Time-Dependent? , 1974 .

[87]  Patrick Suppes,et al.  The axiomatic method with special reference to geometry and physics : proceedings of an international symposium held at the University of California, Berkeley, December 26, 1957-January 4, 1958 , 1959 .

[88]  Karin U. Katz,et al.  What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel , 2018, 1802.01972.

[89]  Hermann Hankel,et al.  Zur Geschichte der Mathematik in Alterthum und Mittelalter , 1874 .

[90]  Nonstandard Analysis, Infinitesimals, and the History of Calculus , 2015 .

[91]  Jeremy Gray A short life of Euler , 2008 .

[92]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .