Thermal parameter identification for non-Fourier heat transfer from molecular dynamics

Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. We propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to reproduce the molecular dynamics results for a short-duration heat pulse where wavelike propagation of heat is observed thereby confirming the existence of second sound in argon. An implementation of the TPI method in MATLAB is available as part of the online supplementary material.

[1]  Kenichiro Aoki,et al.  Bulk properties of anharmonic chains in strong thermal gradients: Non-equilibrium φ4 theory , 1999, chao-dyn/9910015.

[2]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[3]  A. B. Duncan,et al.  Review of Microscale Heat Transfer , 1994 .

[4]  Volz,et al.  Transient Fourier-law deviation by molecular dynamics in solid argon. , 1996, Physical review. B, Condensed matter.

[5]  Ju Li,et al.  Dynamical thermal conductivity of argon crystal , 2007 .

[6]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[7]  Damping and Resonance Characteristics of Thermal Waves , 1992 .

[8]  O V Gendelman,et al.  Heat conduction in one-dimensional lattices with on-site potential. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Peter Galenko,et al.  Diffuse-interface model for rapid phase transformations in nonequilibrium systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  W. Kaminski Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure , 1990 .

[11]  James P. Sethna,et al.  The potential of atomistic simulations and the knowledgebase of interatomic models , 2011 .

[12]  R. Guyer,et al.  Solution of the Linearized Phonon Boltzmann Equation , 1966 .

[13]  A. Singh,et al.  Removing artificial Kapitza effects from bulk thermal conductivity calculations in direct molecular dynamics , 2015 .

[14]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[15]  H. Herwig,et al.  Fourier Versus Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure , 2000 .

[16]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[17]  N. Falcón,et al.  HEAT WAVES AND THERMOHALINE INSTABILITY IN A FLUID , 1995 .

[18]  Ladd,et al.  Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. , 1986, Physical review. B, Condensed matter.

[19]  M. K. Moallemi,et al.  Experimental evidence of hyperbolic heat conduction in processed meat , 1995 .

[20]  R. Jones,et al.  Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals , 2009, 1206.5445.

[21]  D. Joseph,et al.  Shear-wave speeds and elastic moduli for different liquids. Part 1. Theory , 1986, Journal of Fluid Mechanics.

[22]  Shigeo Maruyama,et al.  Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations , 2006 .

[23]  Wheyb. I. N. Lor,et al.  Hyperbolic heat conduction in thin-film high Tc superconductors with interface thermal resistance , 1999 .

[24]  G. Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. Fourier's law , 1982 .

[25]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[26]  C. L. Tien,et al.  Challenges in Microscale Conductive and Radiative Heat Transfer , 1994 .

[27]  D. Tzou,et al.  On the Wave Theory in Heat Conduction , 1994 .

[28]  G. Espinosa-Paredes,et al.  Fuel rod model based on Non-Fourier heat conduction equation , 2009 .

[29]  J. Jellinek,et al.  Separation of the energy of overall rotation in any N-body system. , 1989, Physical review letters.

[30]  S. Gill Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids , 2010 .

[31]  T. Hillen,et al.  Cattaneo models for chemosensitive movement , 2003 .

[32]  D. H. Tsai,et al.  Molecular-dynamical study of second sound in a solid excited by a strong heat pulse , 1976 .

[33]  H. Jackson,et al.  Thermal Conductivity, Second Sound, and Phonon-Phonon Interactions in NaF , 1971 .

[34]  D. Tzou An engineering assessment to the relaxation time in thermal wave propagation , 1993 .

[35]  The resonance phenomenon in thermal waves , 1991 .

[36]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[37]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[38]  P. Klemens Thermal Conduction In Solids , 1976 .

[39]  A. Politi,et al.  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[40]  R. Jones,et al.  An atomistic-to-continuum coupling method for heat transfer in solids , 2008 .

[41]  Glenn J. Martyna,et al.  Molecular dynamics simulations of a protein in the canonical ensemble , 1993 .

[42]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[43]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[44]  Y. Dolak,et al.  Cattaneo models for chemosensitive movement , 2003 .

[45]  H. Jeffreys,et al.  The Earth: Its Origin, History and Physical Constitution , 1925 .

[46]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[47]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[48]  S. Bhatia,et al.  Prediction of high-pressure adsorption equilibrium of supercritical gases using density functional theory. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[49]  D. Tzou A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .

[50]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[51]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[52]  Jace W. Nunziato,et al.  On heat conduction in materials with memory , 1971 .

[53]  Thermal resonance under frequency excitations , 1992 .

[54]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[55]  H. Markovitz Boltzmann and the Beginnings of Linear Viscoelasticity , 1977 .

[56]  Brian Vick,et al.  The question of thermal waves in heterogeneous and biological materials. , 2009, Journal of biomechanical engineering.

[57]  Christopher M. Snowden,et al.  Nanoscale electrothermal co-simulation: compact dynamic models of hyperbolic heat transport and self-consistent device Monte Carlo , 2004, Microelectron. J..

[58]  E. Tadmor,et al.  Stress and heat flux for arbitrary multibody potentials: a unified framework. , 2011, The Journal of chemical physics.

[59]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[60]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[61]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[62]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[63]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[64]  M. N. Özişik,et al.  Non-Fourier effects on transient temperature resulting from periodic on-off heat flux , 1987 .

[65]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[66]  Xiaohao Wei,et al.  Heat Conduction: Mathematical Models and Analytical Solutions , 2008 .

[67]  Jing Liu,et al.  Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living tissues , 2000 .

[68]  Kenny Jolley,et al.  Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach , 2009, J. Comput. Phys..

[69]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[70]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[71]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[72]  D. Srivastava,et al.  Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes , 2005 .

[73]  M. Chester Second Sound in Solids , 1963 .

[74]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[75]  Solution of the linearized boltzmann equation , 1973 .

[76]  C. Tien,et al.  Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors , 1990 .

[77]  Convergence to equilibrium for a fully hyperbolic phase‐field model with Cattaneo heat flux law , 2009 .

[78]  D. Batchelder,et al.  Measurement of the elastic constants of argon from 3 to 77 degrees K , 1970 .

[79]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .

[80]  P. Jiang,et al.  Molecular dynamics simulations of non-Fourier heat conduction , 2008 .

[81]  L. Finegold,et al.  Low-Temperature Heat Capacities of Solid Argon and Krypton , 1969 .

[82]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .