On the sphericity of scaling limits of random planar quadrangulations
暂无分享,去创建一个
[1] D. Iwanenko,et al. Quantum Geometry , 1929, Nature.
[2] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[3] J. Pitman,et al. Rayleigh processes, real trees, and root growth with re-grafting , 2004, math/0402293.
[4] P. White. REGULAR CONVERGENCE , 2007 .
[5] J. Gall. A conditional limit theorem for tree-indexed random walk , 2006 .
[6] Anita Winter,et al. Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees) , 2009 .
[7] J. L. Gall,et al. Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .
[8] J. F. Le Gall,et al. Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .
[10] David Aldous,et al. The Continuum Random Tree III , 1991 .
[11] Abdelkader Mokkadem,et al. Limit of normalized quadrangulations: The Brownian map , 2006 .
[12] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[13] Carsten Thomassen,et al. Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.
[14] Philippe Chassaing,et al. Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.
[15] J. L. Gall,et al. The topological structure of scaling limits of large planar maps , 2006, math/0607567.
[16] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[17] Conditioned Brownian trees , 2005, math/0501066.