Mechanisms of Recombination: Lessons from E. coli

The genetics and biochemistry of genetic recombination in E. coli has been studied for over four decades and provides a useful model system to understand recombination in other organisms. Here we provide an overview of the mechanisms of recombination and how such processes contribute to DNA repair. We describe the E. coli functions that are known to contribute to these mechanisms, step by step, and summarize their biochemical properties in relation to the role these proteins play in vivo. We feature areas of investigation that are newly emerging, as well as work that provides a historical perspective to the field. Finally, we highlight some of the questions that remain unanswered.

[1]  Catherine Suski,et al.  Resolution of converging replication forks by RecQ and topoisomerase III. , 2008, Molecular cell.

[2]  M. Cox,et al.  SSB Antagonizes RecX-RecA Interaction* , 2008, Journal of Biological Chemistry.

[3]  C. Dekker,et al.  Homologous recombination in real time: DNA strand exchange by RecA. , 2008, Molecular cell.

[4]  N. Pavletich,et al.  Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures , 2008, Nature.

[5]  J. Blackwood,et al.  SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. , 2008, Molecular cell.

[6]  B. Michel,et al.  ruvA Mutants That Resolve Holliday Junctions but Do Not Reverse Replication Forks , 2008, PLoS genetics.

[7]  R. Baskin,et al.  RecBCD Enzyme Switches Lead Motor Subunits in Response to χ Recognition , 2007, Cell.

[8]  H. Sanchez,et al.  Dynamic structures of Bacillus subtilis RecN–DNA complexes , 2007, Nucleic acids research.

[9]  B. Michel,et al.  Recombination proteins and rescue of arrested replication forks. , 2007, DNA repair.

[10]  J. Keck,et al.  A Central Role for SSB in Escherichia coli RecQ DNA Helicase Function* , 2007, Journal of Biological Chemistry.

[11]  J. Courcelle,et al.  Inactivation of the DnaB Helicase Leads to the Collapse and Degradation of the Replication Fork: a Comparison to UV-Induced Arrest , 2007, Journal of bacteriology.

[12]  J. Lupski,et al.  RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins. , 2007, Molecular cell.

[13]  M. Cox,et al.  SSB Protein Limits RecOR Binding onto Single-stranded DNA* , 2007, Journal of Biological Chemistry.

[14]  M. Cox Motoring along with the bacterial RecA protein , 2007, Nature Reviews Molecular Cell Biology.

[15]  S. Lovett,et al.  RecA-independent recombination is efficient but limited by exonucleases , 2007, Proceedings of the National Academy of Sciences.

[16]  M. Cox Regulation of Bacterial RecA Protein Function , 2007, Critical reviews in biochemistry and molecular biology.

[17]  S. Sandler,et al.  DinI and RecX modulate RecA–DNA structures in Escherichia coli K‐12 , 2007, Molecular microbiology.

[18]  S. Lovett Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. , 2006, DNA repair.

[19]  Ronald J. Baskin,et al.  Direct observation of individual RecA filaments assembling on single DNA molecules , 2006, Nature.

[20]  H. Shinagawa,et al.  Degradation of Escherichia coli RecN Aggregates by ClpXP Protease and Its Implications for DNA Damage Tolerance* , 2006, Journal of Biological Chemistry.

[21]  Miroslav Radman,et al.  Reassembly of shattered chromosomes in Deinococcus radiodurans , 2006, Nature.

[22]  J. Courcelle,et al.  RuvABC Is Required to Resolve Holliday Junctions That Accumulate following Replication on Damaged Templates in Escherichia coli* , 2006, Journal of Biological Chemistry.

[23]  Muneaki Nakamura,et al.  Real-Time Observation of RecA Filament Dynamics with Single Monomer Resolution , 2006, Cell.

[24]  M. Blaser,et al.  UvrD Helicase Suppresses Recombination and DNA Damage-Induced Deletions , 2006, Journal of bacteriology.

[25]  M. Nei,et al.  Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer , 2006, Proceedings of the National Academy of Sciences.

[26]  J. Courcelle,et al.  Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Haber,et al.  Break-induced replication and recombinational telomere elongation in yeast. , 2006, Annual review of biochemistry.

[28]  M. Marinus,et al.  Homologous recombination prevents methylation-induced toxicity in Escherichia coli , 2006, Nucleic acids research.

[29]  S. Lovett,et al.  DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. , 2006, Molecular cell.

[30]  A. Strunnikov SMC complexes in bacterial chromosome condensation and segregation. , 2006, Plasmid.

[31]  S. Lovett,et al.  RecJ exonuclease: substrates, products and interaction with SSB , 2006, Nucleic acids research.

[32]  S. Kowalczykowski,et al.  The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. , 2006, Molecular cell.

[33]  M. O’Donnell,et al.  RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. , 2006, Journal of molecular biology.

[34]  M. Cox,et al.  The RecF protein antagonizes RecX function via direct interaction. , 2006, Molecular cell.

[35]  M. Bichara,et al.  Inactivation of recG stimulates the RecF pathway during lesion-induced recombination in E. coli. , 2006, DNA repair.

[36]  S. Kowalczykowski,et al.  Translocation by the RecB Motor Is an Absolute Requirement for χ-Recognition and RecA Protein Loading by RecBCD Enzyme* , 2005, Journal of Biological Chemistry.

[37]  S. Kowalczykowski,et al.  Bipolar DNA Translocation Contributes to Highly Processive DNA Unwinding by RecBCD Enzyme* , 2005, Journal of Biological Chemistry.

[38]  E. L. Zechiedrich,et al.  A role for topoisomerase III in a recombination pathway alternative to RuvABC , 2005, Molecular microbiology.

[39]  C. Bell Structure and mechanism of Escherichia coli RecA ATPase , 2005, Molecular microbiology.

[40]  S. Rosenberg,et al.  A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. , 2005, Molecular cell.

[41]  K. Kreuzer Interplay between DNA replication and recombination in prokaryotes. , 2005, Annual review of microbiology.

[42]  D. Kidane,et al.  Intracellular Protein and DNA Dynamics in Competent Bacillus subtilis Cells , 2005, Cell.

[43]  R. G. Lloyd,et al.  RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double‐strand breaks , 2005, Molecular microbiology.

[44]  T. Hirano SMC proteins and chromosome mechanics: from bacteria to humans , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  R. Heller,et al.  The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. , 2005, Molecular cell.

[46]  James J Foti,et al.  A bacterial G protein-mediated response to replication arrest. , 2005, Molecular cell.

[47]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[48]  F. Fabre,et al.  UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli , 2005, The EMBO journal.

[49]  M. Cox,et al.  The DinI and RecX Proteins Are Competing Modulators of RecA Function* , 2004, Journal of Biological Chemistry.

[50]  M. Cox,et al.  Inhibition of RecA Protein by the Escherichia coli RecX Protein , 2004, Journal of Biological Chemistry.

[51]  Kendric C. Smith Recombinational DNA repair: the ignored repair systems. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  A. Kuzminov,et al.  RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Dale B. Wigley,et al.  Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks , 2004, Nature.

[54]  M. Marinus,et al.  RecN and RecG are required for Escherichia coli survival of Bleomycin-induced damage. , 2004, Mutation research.

[55]  J. Petrini,et al.  The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. , 2004, DNA repair.

[56]  R. Kanaar,et al.  Homologous recombination-mediated double-strand break repair. , 2004, DNA repair.

[57]  Oleg N. Voloshin,et al.  The DinI Protein Stabilizes RecA Protein Filaments* , 2004, Journal of Biological Chemistry.

[58]  M. Marinus,et al.  Spontaneous and cisplatin-induced recombination in Escherichia coli. , 2004, DNA repair.

[59]  S. Savvides,et al.  The C‐terminal domain of full‐length E. coli SSB is disordered even when bound to DNA , 2004, Protein science : a publication of the Protein Society.

[60]  D. Kidane,et al.  Visualization of DNA double‐strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids , 2004, Molecular microbiology.

[61]  M. Goodman,et al.  Error-prone replication for better or worse. , 2004, Trends in microbiology.

[62]  R. G. Lloyd,et al.  RecG helicase promotes DNA double‐strand break repair , 2004, Molecular microbiology.

[63]  B. Michel,et al.  Requirement for RecFOR‐mediated recombination in priA mutant , 2004, Molecular microbiology.

[64]  J. Reese,et al.  What is the structure of the RecA-DNA filament? , 2004, Current protein & peptide science.

[65]  A. Kuzminov,et al.  Chromosomal fragmentation in dUTPase‐deficient mutants of Escherichia coli and its recombinational repair , 2004, Molecular microbiology.

[66]  K. Marians Mechanisms of replication fork restart in Escherichia coli. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  R. G. Lloyd,et al.  Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Ian D. Hickson,et al.  The Bloom's syndrome helicase suppresses crossing over during homologous recombination , 2003, Nature.

[69]  D. Leach,et al.  Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. , 2003, DNA repair.

[70]  Gerald R. Smith,et al.  RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity , 2003, Nature.

[71]  S. Kowalczykowski,et al.  RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. , 2003, Molecular cell.

[72]  S. Lovett Connecting replication and recombination. , 2003, Molecular cell.

[73]  K. Marians,et al.  PriA mediates DNA replication pathway choice at recombination intermediates. , 2003, Molecular cell.

[74]  Joel P. Brockman,et al.  Escherichia coli RecX Inhibits RecA Recombinase and Coprotease Activities in Vitro and in Vivo * , 2003, The Journal of Biological Chemistry.

[75]  S. Lovett,et al.  Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Kendall L Knight,et al.  Molecular Design and Functional Organization of the RecA Protein , 2003, Critical reviews in biochemistry and molecular biology.

[77]  S. Lovett,et al.  Role for radA/sms in Recombination Intermediate Processing in Escherichia coli , 2002, Journal of bacteriology.

[78]  L. Symington Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair , 2002, Microbiology and Molecular Biology Reviews.

[79]  S. Kowalczykowski,et al.  Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Z. Livneh,et al.  Error-free recombinational repair predominates over mutagenic translesion replication in E. coli. , 2002, Molecular cell.

[81]  R. G. Lloyd,et al.  Genome stability and the processing of damaged replication forks by RecG. , 2002, Trends in genetics : TIG.

[82]  S. Lovett,et al.  Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. , 2002, Genetics.

[83]  M. Cox,et al.  The RecOR proteins modulate RecA protein function at 5′ ends of single‐stranded DNA , 2001, The EMBO journal.

[84]  D. Leach,et al.  Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. , 2001, Molecular cell.

[85]  D. Leach,et al.  Recombinational repair of chromosomal DNA double‐strand breaks generated by a restriction endonuclease , 2001, Molecular microbiology.

[86]  R. Woodgate,et al.  Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. Lovett,et al.  Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. , 2001, Genetics.

[88]  A. Bax,et al.  A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. , 2001, Genes & development.

[89]  F. Harmon,et al.  Biochemical Characterization of the DNA Helicase Activity of theEscherichia coli RecQ Helicase* , 2001, The Journal of Biological Chemistry.

[90]  S. Kowalczykowski Initiation of genetic recombination and recombination-dependent replication. , 2000, Trends in biochemical sciences.

[91]  M. Goodman,et al.  Sloppier copier DNA polymerases involved in genome repair. , 2000, Current opinion in genetics & development.

[92]  C. Millar,et al.  Palindromes as substrates for multiple pathways of recombination in Escherichia coli. , 2000, Genetics.

[93]  S. Sandler,et al.  Role of PriA in Replication Fork Reactivation inEscherichia coli , 2000, Journal of bacteriology.

[94]  A. Cohen,et al.  A RecG-Independent Nonconservative Branch Migration Mechanism in Escherichia coli Recombination , 1999, Journal of bacteriology.

[95]  A. Kuzminov Recombinational Repair of DNA Damage inEscherichia coli and Bacteriophage λ , 1999, Microbiology and Molecular Biology Reviews.

[96]  J. Courcelle,et al.  RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli , 1999, Molecular and General Genetics MGG.

[97]  S. Sandler,et al.  dnaC mutations suppress defects in DNA replication‐ and recombination‐associated functions in priB and priC double mutants in Escherichia coli K‐12 , 1999, Molecular microbiology.

[98]  S. Lovett,et al.  Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC. , 1999, Genetics.

[99]  F. Harmon,et al.  RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. , 1999, Molecular cell.

[100]  D. Leach,et al.  DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. , 1999, Nucleic acids research.

[101]  W. Wackernagel,et al.  Interaction of RecBCD Enzyme with DNA at Double-Strand Breaks Produced in UV-Irradiated Escherichia coli: Requirement for DNA End Processing , 1998, Journal of bacteriology.

[102]  L. Kirkham,et al.  The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[103]  S. Kowalczykowski,et al.  DNA strand exchange proteins: a biochemical and physical comparison. , 1998, Frontiers in bioscience : a journal and virtual library.

[104]  A. Cohen,et al.  Heteroduplex joint formation in Escherichia coli recombination is initiated by pairing of a 3'-ending strand. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[105]  T. Horii,et al.  Inhibition of Escherichia coli RecA coprotease activities by DinI , 1998, The EMBO journal.

[106]  S. Lovett,et al.  Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance. , 1998, Genetics.

[107]  S. Kowalczykowski,et al.  The function of the secondary DNA‐binding site of RecA protein during DNA strand exchange , 1998, The EMBO journal.

[108]  M. Cox,et al.  Recombinational DNA Repair: The RecF and RecR Proteins Limit the Extension of RecA Filaments beyond Single-Strand DNA Gaps , 1997, Cell.

[109]  B. Michel,et al.  uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway , 1997, Molecular microbiology.

[110]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[111]  Daniel G. Anderson,et al.  The Translocating RecBCD Enzyme Stimulates Recombination by Directing RecA Protein onto ssDNA in a χ-Regulated Manner , 1997, Cell.

[112]  T. Galitski,et al.  Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. , 1997, Genetics.

[113]  G. Waksman,et al.  Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[114]  K. B. Low,et al.  Resolution of an early RecA-recombination intermediate by a junction-specific endonuclease. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. Porter,et al.  Analysis of ssb mutations in vivo implicates SSB protein in two distinct pathways of SOS induction and in recombinational DNA repair , 1997, Molecular microbiology.

[116]  M. Cox,et al.  RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. , 1997, Journal of molecular biology.

[117]  R. G. Lloyd,et al.  Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12 , 1996, Journal of bacteriology.

[118]  P. Hasty,et al.  A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53 , 1996, Molecular and cellular biology.

[119]  S. West,et al.  Bypass of DNA heterologies during RuvAB-mediated three- and four-strand branch migration. , 1996, Journal of molecular biology.

[120]  Y. Song,et al.  Escherichia coli DNA repair genes radA and sms are the same gene , 1996, Journal of bacteriology.

[121]  S. Lovett,et al.  Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[122]  K. Nakao,et al.  Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[123]  T. Kogoma Recombination by Replication , 1996, Cell.

[124]  R. G. Lloyd,et al.  Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. , 1996, Journal of molecular biology.

[125]  D. Leach,et al.  The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[126]  G. Cadwell,et al.  The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair , 1996, Journal of bacteriology.

[127]  Z. Livneh,et al.  Reconstitution of repair-gap UV mutagenesis with purified proteins from Escherichia coli: a role for DNA polymerases III and II. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[128]  N. Kleckner,et al.  Identification of double holliday junctions as intermediates in meiotic recombination , 1995, Cell.

[129]  S. Lovett,et al.  Suppression of recJ exonuclease mutants of Escherichia coli by alterations in DNA helicases II (uvrD) and IV (helD). , 1995, Genetics.

[130]  S. Lovett,et al.  Enhancement of RecA Strand-transfer Activity by the RecJ Exonuclease of Escherichia coli(*) , 1995, The Journal of Biological Chemistry.

[131]  R. G. Lloyd,et al.  Conjugational recombination in Escherichia coli: genetic analysis of recombinant formation in Hfr x F- crosses. , 1995, Genetics.

[132]  C. Luisi-Deluca Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli , 1995, Journal of bacteriology.

[133]  S Gangloff,et al.  The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase , 1994, Molecular and cellular biology.

[134]  R. G. Lloyd,et al.  Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. , 1994, The EMBO journal.

[135]  R. Kolodner,et al.  Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. , 1994, The Journal of biological chemistry.

[136]  S. Ehrlich,et al.  Effect of length and location of heterologous sequences on RecA-mediated strand exchange. , 1994, The Journal of biological chemistry.

[137]  S. Sandler,et al.  RecOR suppression of recF mutant phenotypes in Escherichia coli K-12 , 1994, Journal of bacteriology.

[138]  M. Radman,et al.  Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[139]  G. Gloor,et al.  Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair , 1994, Molecular and cellular biology.

[140]  R. Kolodner,et al.  Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. , 1994, Journal of molecular biology.

[141]  W. Franklin,et al.  Escherichia coli single-stranded DNA binding protein stimulates the DNA deoxyribophosphodiesterase activity of exonuclease I. , 1994, Nucleic acids research.

[142]  L. Liu,et al.  recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. , 1994, Journal of molecular biology.

[143]  S. Lovett,et al.  A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. , 1993, Genetics.

[144]  R. G. Lloyd,et al.  Reverse branch migration of holliday junctions by RecG protein: A new mechanism for resolution of intermediates in recombination and DNA repair , 1993, Cell.

[145]  D. Sherratt,et al.  Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12 , 1993, Cell.

[146]  M. Cox,et al.  A reverse DNA strand exchange mediated by recA protein and exonuclease I. The generation of apparent DNA strand breaks by recA protein is explained. , 1993, The Journal of biological chemistry.

[147]  S. Ehrlich,et al.  Antipairing and strand transferase activities of E. coli helicase II (UvrD). , 1993, Nucleic acids research.

[148]  R. G. Lloyd,et al.  Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations , 1993, Journal of bacteriology.

[149]  R. Kolodner,et al.  Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[150]  K. Umezu,et al.  RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. , 1993, Journal of molecular biology.

[151]  S. Kowalczykowski,et al.  The recombination hotspot χ is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme , 1993, Cell.

[152]  Y. Sano Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[153]  J. Haber,et al.  Mating-type gene switching in Saccharomyces cerevisiae. , 1992, Trends in genetics : TIG.

[154]  A. F. Neuwald,et al.  Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. , 1992, Gene.

[155]  R. W. Davis,et al.  ATP hydrolysis and the displaced strand are two factors that determine the polarity of RecA-promoted DNA strand exchange. , 1992, Journal of molecular biology.

[156]  K. Adzuma Stable synapsis of homologous DNA molecules mediated by the Escherichia coli RecA protein involves local exchange of DNA strands. , 1992, Genes & development.

[157]  D. Lilley,et al.  DNA replication, 2nd edn , 1992 .

[158]  S. Kowalczykowski,et al.  A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. , 1992, The Journal of biological chemistry.

[159]  R. G. Lloyd,et al.  Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12 , 1992, Journal of bacteriology.

[160]  M. Radman,et al.  Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. , 1991, Genetics.

[161]  R. G. Lloyd,et al.  Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG , 1991, Journal of bacteriology.

[162]  S. Kowalczykowski,et al.  Homologous pairing in vitro stimulated by the recombination Hotspot, Chi , 1991, Cell.

[163]  A. Clark rec genes and homologous recombination proteins in Escherichia coli. , 1991, Biochimie.

[164]  Gerald R. Smith Conjugational recombination in E. coli: Myths and mechanisms , 1991, Cell.

[165]  P. Laine,et al.  The single-stranded DNA-binding protein of Escherichia coli. , 1990, Microbiological reviews.

[166]  K. Nakayama,et al.  Escherichia coli RecQ protein is a DNA helicase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[167]  M. Cox,et al.  Assembly and disassembly of RecA protein filaments occur at opposite filament ends. Relationship to DNA strand exchange. , 1990, The Journal of biological chemistry.

[168]  M. Radman,et al.  The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants , 1989, Nature.

[169]  R. G. Lloyd,et al.  Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair , 1989, Molecular and General Genetics MGG.

[170]  S. Lovett,et al.  Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Kendric C. Smith,et al.  recA‐dependent DNA repair processes , 1989, BioEssays : news and reviews in molecular, cellular and developmental biology.

[172]  M. Madiraju,et al.  Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[173]  P. Moreau Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli , 1988, Journal of bacteriology.

[174]  J. Griffith,et al.  Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA. , 1988, Journal of molecular biology.

[175]  W. Reznikoff,et al.  Effect of dam methylation on Tn5 transposition. , 1988, Journal of molecular biology.

[176]  K. Smith,et al.  Role of DNA polymerase I in postreplication repair: a reexamination with Escherichia coli delta polA , 1987, Journal of bacteriology.

[177]  S. Kowalczykowski,et al.  Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. , 1987, Journal of molecular biology.

[178]  S. Kowalczykowski,et al.  Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. , 1987, Journal of molecular biology.

[179]  S. Linn,et al.  Toxicity, Mutagenesis and Stress Responses Induced in Escherichia Coli by Hydrogen Peroxide , 1987, Journal of Cell Science.

[180]  T. C. Wang,et al.  recA (Srf) suppression of recF deficiency in the postreplication repair of UV-irradiated Escherichia coli K-12 , 1986, Journal of bacteriology.

[181]  K. Smith,et al.  Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. , 1986, Radiation research.

[182]  D. Morris,et al.  Modulation of the relaxing activity of Escherichia coli topoisomerase I by single-stranded DNA binding proteins. , 1986, Biochemical and biophysical research communications.

[183]  S. A. Chow,et al.  Patterns of nuclease protection during strand exchange. recA protein forms heteroduplex DNA by binding to strands of the same polarity. , 1986, The Journal of biological chemistry.

[184]  S. Feinstein,et al.  Hyper-recombining recipient strains in bacterial conjugation. , 1986, Genetics.

[185]  Henry Huang,et al.  Homologous recombination in Escherichia coli: dependence on substrate length and homology. , 1986, Genetics.

[186]  R. G. Lloyd,et al.  Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12 , 1985, Journal of bacteriology.

[187]  N. Kleckner,et al.  IS10 transposition is regulated by DNA adenine methylation , 1985, Cell.

[188]  P. Finch,et al.  Identification of the Escherichia coli recN gene product as a major SOS protein , 1985, Journal of bacteriology.

[189]  J. Register,et al.  The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. , 1985, The Journal of biological chemistry.

[190]  G. R. Smith,et al.  Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. , 1985, Journal of molecular biology.

[191]  R. Kolodner,et al.  Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli , 1985, Journal of bacteriology.

[192]  J. Menetski,et al.  Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. , 1985, Journal of molecular biology.

[193]  R. Kolodner,et al.  Escherichia coli strains containing mutations in the structural gene for topoisomerase I are recombination deficient , 1984, Journal of bacteriology.

[194]  K. Smith,et al.  recF-dependent and recF recB-independent DNA gap-filling repair processes transfer dimer-containing parental strands to daughter strands in Escherichia coli K-12 uvrB , 1984, Journal of bacteriology.

[195]  K. Muniyappa,et al.  Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[196]  K. Smith,et al.  Characterization of a new radiation-sensitive mutant, Escherichia coli K-12 radC102. , 1984, Radiation research.

[197]  M. Volkert,et al.  Suppression of Escherichia coli recF mutations by recA-linked srfA mutations , 1984, Journal of bacteriology.

[198]  S. Lovett,et al.  Genetic analysis of the recJ gene of Escherichia coli K-12 , 1984, Journal of bacteriology.

[199]  Jack W. Szostak,et al.  The double-strand-break repair model for recombination , 1983, Cell.

[200]  J. Griffith,et al.  Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[201]  T. C. Wang,et al.  Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12 , 1982, Journal of bacteriology.

[202]  T. Shibata,et al.  Homologous pairing and topological linkage of DNA molecules by combined action of E. coli recA protein and topoisomerase I , 1981, Cell.

[203]  D. K. Willis,et al.  Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12 , 1981, Journal of bacteriology.

[204]  T. Shibata,et al.  The topology of homologous pairing promoted by RecA protein , 1980, Cell.

[205]  W. Wackernagel,et al.  Degradation of linear and circular DNA with gaps by the recBC enzyme of Escherichia coli. Effects of gap length and the presence of cell-free extracts. , 1980, European journal of biochemistry.

[206]  A. Kornberg,et al.  Mutant single-strand binding protein of Escherichia coli: genetic and physiological characterization , 1979, Journal of bacteriology.

[207]  S. R. Kushner,et al.  Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes , 1978, Journal of bacteriology.

[208]  M. Gefter,et al.  Properties of the Escherichia coli DNA-binding (unwinding) protein interaction with nucleolytic enzymes and DNA. , 1975, Journal of molecular biology.

[209]  F. Stahl,et al.  Rec-mediated recombinational hot spot activity in bacteriophage lambda. III. Chi mutations are site-mutations stimulating rec-mediated recombination. , 1975, Journal of molecular biology.

[210]  M. Gefter,et al.  Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro. , 1974, The Journal of biological chemistry.

[211]  F. Stahl,et al.  Rec-mediated recombinational hot spot activity in bacteriophage λ , 1974, Molecular and General Genetics MGG.

[212]  Z. Horii,et al.  Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. , 1973, Journal of molecular biology.

[213]  L. Enquist,et al.  Replication of bacteriophage lambda DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. , 1973, Journal of molecular biology.

[214]  N. Sigal,et al.  A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[215]  C. Wilde,et al.  Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. , 1971, Journal of molecular biology.

[216]  S. R. Kushner,et al.  Genetic recombination in Escherichia coli: the role of exonuclease I. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[217]  P. Howard-Flanders,et al.  Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. , 1968, Journal of molecular biology.

[218]  P. T. Emmerson,et al.  Cotransduction with thy of a gene required for genetic recombination in Escherichia coli , 1967, Journal of bacteriology.

[219]  P Howard-Flanders,et al.  Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. , 1966, Genetics.

[220]  A J CLARK,et al.  ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[221]  I. Lehman,et al.  THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. V. ON THE SPECIFICITY OF EXONUCLEASE I (PHOSPHODIESTERASE). , 1964, The Journal of biological chemistry.

[222]  R. Sinsheimer Single-stranded DNA. , 1962, Scientific American.

[223]  ro Jorge Serment-Guerrero,et al.  The SOS response of Escherichia coli , 2005 .

[224]  S. Kowalczykowski,et al.  Homologous Recombination by the RecBCD and RecF Pathways. , 2005 .

[225]  A. Kuzminov,et al.  Overview of Homologous Recombination and Repair Machines , 2005 .

[226]  P. Hanawalt,et al.  Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: Identification of a new mutation (recQ1) that blocks the RecF recombination pathway , 2004, Molecular and General Genetics MGG.

[227]  R. G. Lloyd,et al.  Hyper-recombination in uvrD mutants of Escherichia coli K-12 , 2004, Molecular and General Genetics MGG.

[228]  A. Chaudhury,et al.  Role of Escherichia coli RecBC enzyme in SOS induction , 2004, Molecular and General Genetics MGG.

[229]  R. G. Lloyd,et al.  Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12 , 2004, Molecular and General Genetics MGG.

[230]  A. Cohen,et al.  Plasmidic recombination in Escherichia coliK-12: The role of recF gene function , 2004, Molecular and General Genetics MGG.

[231]  R. G. Lloyd,et al.  Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product , 2004, Molecular and General Genetics MGG.

[232]  S. Friedman,et al.  Purification and Properties of the Escherichia coli Deoxyribonucleic Acid-unwinding Protein , 2002 .

[233]  G. R. Smith,et al.  Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. , 2001, Annual review of genetics.

[234]  M. Cox,et al.  Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. , 2001, Annual review of genetics.

[235]  A. Kuzminov Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. , 1999, Microbiology and molecular biology reviews : MMBR.

[236]  S. West,et al.  Processing of recombination intermediates by the RuvABC proteins. , 1997, Annual review of genetics.

[237]  S. Sandler,et al.  Homologous genetic recombination: the pieces begin to fall into place. , 1994, Critical reviews in microbiology.

[238]  T. Lohman,et al.  Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. , 1994, Annual review of biochemistry.

[239]  J. Sawitzke,et al.  Phage lambda has an analog of Escherichia coli recO, recR and recF genes. , 1992, Genetics.

[240]  G. R. Smith,et al.  Mechanism and control of homologous recombination in Escherichia coli. , 1987, Annual review of genetics.

[241]  A. Quiñones,et al.  Differential suppressor effects of the ssb‐1 and ssb‐113 alleles on uvrD mutator of Escherichia coli in DNA repair and mutagenesis , 1987, Journal of basic microbiology.

[242]  J. W. Chase,et al.  Single-stranded DNA binding proteins required for DNA replication. , 1986, Annual review of biochemistry.

[243]  S. Linn The Deoxyribonucleases of Escherichia coli , 1982 .

[244]  S. Barbour,et al.  The role of the rec genes in the viability of Escherichia coli K12. , 1975, Basic life sciences.

[245]  A. Clark Recombination deficient mutants of E. coli and other bacteria. , 1973, Annual review of genetics.

[246]  A. Clark Toward a metabolic interpretation of genetic recombination of E. coli and its phages. , 1971, Annual review of microbiology.