Extremal quantum cloning machines

We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

[1]  G. M. D'Ariano,et al.  Phase-covariant quantum cloning , 1999, quant-ph/9909046.

[2]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[3]  Nicolas J. Cerf,et al.  Asymmetric phase covariant d-dimensional cloning , 2005, Quantum Inf. Comput..

[4]  Nicolas J. Cerf,et al.  Cloning a real d-dimensional quantum state on the edge of the no-signaling condition , 2003 .

[5]  G. M. D'Ariano,et al.  Optimal phase covariant cloning for qubits and qutrits , 2003, quant-ph/0301175.

[6]  Nicolas Cerf,et al.  Asymmetric quantum cloning machines , 1998 .

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  G. D’Ariano Extremal covariant quantum operations and positive operator valued measures , 2004 .

[9]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[10]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[11]  D. Dieks Communication by EPR devices , 1982 .

[12]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[13]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[14]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[15]  Ipe,et al.  Cloning of continuous quantum variables , 1999, Physical review letters.

[16]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[17]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[19]  N J Cerf,et al.  Quantum cloning machines with phase-conjugate input modes. , 2001, Physical review letters.

[20]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[21]  H. Imai,et al.  Phase-covariant quantum cloning of qudits , 2002, quant-ph/0205126.

[22]  Cloning a qutrit , 2001, quant-ph/0110092.

[23]  Robert B. Griffiths,et al.  Two qubit copying machine for economical quantum eavesdropping , 1999 .

[24]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[25]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.

[26]  G. D’Ariano,et al.  Optimal nonuniversally covariant cloning , 2001, quant-ph/0101100.

[27]  H. Scutaru Some remarks on covariant completely positive linear maps on C∗-algebras , 1979 .

[28]  Giacomo Mauro D'Ariano,et al.  Economical phase-covariant cloning of qudits , 2005 .