Artificial photosynthetic reaction centers with carotenoid antennas

[1]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[2]  H. Imahori,et al.  Giant multiporphyrin arrays as artificial light-harvesting antennas. , 2004, The journal of physical chemistry. B.

[3]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[4]  T. Gillbro,et al.  Ultrafast Energy Transfer from a Carotenoid to a Chlorin in a Simple Artificial Photosynthetic Antenna , 2002 .

[5]  S. Fukuzumi,et al.  Comparison of reorganization energies for intra- and intermolecular electron transfer. , 2002, Angewandte Chemie.

[6]  Dirk M Guldi,et al.  Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. , 2002, Chemical Society reviews.

[7]  T. Moore,et al.  Efficient energy transfer and electron transfer in an artificial photosynthetic antenna-reaction center complex , 2002 .

[8]  T. Moore,et al.  Synthesis of a carotenobenzoporphyrin from a meso-diphenylporphyrin , 2000 .

[9]  B. Robinson Bacteriopurpurins: Synthesis from meso-Diacrylate Substituted Porphyrins , 2000 .

[10]  T. Moore,et al.  Photoinduced Electron Transfer in Carotenoporphyrin−Fullerene Triads: Temperature and Solvent Effects , 2000 .

[11]  R. Boyle,et al.  Advances in Modern Synthetic Porphyrin Chemistry , 2000 .

[12]  T. Moore,et al.  An Artificial Photosynthetic Antenna-Reaction Center Complex , 1999 .

[13]  M. Prato,et al.  Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives , 1998 .

[14]  A. Moore,et al.  Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad , 1997 .

[15]  Imahori Hiroshi,et al.  The small reorganization energy of C60 in electron transfer , 1996 .

[16]  T. Moore,et al.  PHOTOINDUCED ELECTRON TRANSFER IN A CAROTENOBUCKMINSTERFULLERENE DYAD , 1995 .

[17]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[18]  T. Moore,et al.  PREPARATION AND PHOTOPHYSICAL STUDIES OF PORPHYRIN‐C60 DYADS , 1994 .

[19]  M. Gómez-Lechón,et al.  PHOTODYNAMIC LIPID PEROXIDATION BY THE PHOTOSENSITIZING NONSTEROIDAL ANTIINFLAMMATORY DRUGS SUPROFEN AND TIAPROFENIC ACID , 1994, Photochemistry and photobiology.

[20]  R. G. Alden,et al.  Mimicking Carotenoid Quenching of Chlorophyll Fluorescence , 1993 .

[21]  E. Land,et al.  PHOTOPHYSICAL PROPERTIES OF meso‐TETRAPHENYLPORPHYRIN and SOME meso‐TETRA(HYDROXYPHENYL)PORPHYRINS , 1988, Photochemistry and photobiology.

[22]  D. Dolphin,et al.  Synthesis of hydrocarbon-strapped porphyrins containing quinone and phenolic groups , 1987 .

[23]  R. Cogdell Carotenoids in photosynthesis , 1978, Photochemistry and photobiology.

[24]  N. Hush Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships , 1958 .

[25]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[26]  T. Moore,et al.  Light harvesting and photoprotective functions of carotenoids in compact artificial photosynthetic antenna designs , 2004 .

[27]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[28]  M. Gunter,et al.  Purpurins Bearing Functionality at the 6,16-meso-Positions: Synthesis From 5,15-Disubstituted meso-[β-(Methoxycarbonyl)vinyl]porphyrins , 1990 .

[29]  M. Gunter,et al.  A synthesis of purpurin derivatives substituted at the 6,16-meso positions. , 1990 .

[30]  N. Hush,et al.  Adiabatic theory of outer sphere electron-transfer reactions in solution , 1961 .

[31]  R. Marcus ON THE THEORY OF ELECTROCHEMICAL AND CHEMICAL ELECTRON TRANSFER PROCESSES , 1959 .