Stability of contact discontinuity for the Boltzmann equation

The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier–Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.

[1]  Shuichi Kawashima,et al.  Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion , 1985 .

[2]  Yoshio Sone,et al.  Kinetic Theory and Fluid Dynamics , 2002 .

[3]  Pierre-Louis Lions,et al.  From the Boltzmann Equations¶to the Equations of¶Incompressible Fluid Mechanics, I , 2001 .

[4]  Yan Guo,et al.  The Boltzmann equation in the whole space , 2004 .

[5]  Takaaki Nishida,et al.  On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation , 1979 .

[6]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[7]  On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary , 2004 .

[8]  Zhouping Xin,et al.  Pointwise decay to contact discontinuities for systems of viscous conservation laws , 1997 .

[9]  T. Nishida Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation , 1978 .

[10]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[11]  Kenji Nishihara,et al.  On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas , 1985 .

[12]  Russel E. Caflisch,et al.  The milne and kramers problems for the boltzmann equation of a hard sphere gas , 1986 .

[13]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[14]  Tai-Ping Liu,et al.  Nonlinear Stability of Shock Waves for Viscous Conservation Laws , 1985 .

[15]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[16]  Claude Bardos,et al.  The Classical Incompressible Navier-Stokes Limit of the Boltzmann Equation(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics) , 1991 .

[17]  Z. Xin,et al.  Nonlinear stability of rarefaction waves for compressible Navier Stokes equations , 1988 .

[18]  Kenji Nishihara,et al.  Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas , 1986 .

[19]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[20]  C. Bardos,et al.  Différents aspects de la notion d'entropie au niveau de l'équation de Boltzmann et de Navier-Stokes , 1984 .

[21]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[22]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[23]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[24]  A. Nouri,et al.  On the Milne Problem and the Hydrodynamic Limit for a Steady Boltzmann Equation Model , 2000 .

[25]  T. Nishida,et al.  Global Solutions to the Initial Value Problem for the Nonlinear Boltzmann Equation , 1976 .

[26]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation, II , 1963 .

[27]  François Golse,et al.  On a boundary layer problem for the nonlinear Boltzmann equation , 1988 .

[28]  Jonathan Goodman,et al.  Nonlinear asymptotic stability of viscous shock profiles for conservation laws , 1986 .

[29]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[30]  Huijiang Zhao,et al.  Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation , 2006 .

[31]  S. Ukai,et al.  On the existence of global solutions of mixed problem for non-linear Boltzmann equation , 1974 .

[32]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[33]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[34]  On the Global Stability of Contact Discontinuity for Compressible Navier-Stokes Equations. , 2003 .

[35]  T. Carleman,et al.  Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .

[36]  J. Maxwell The Scientific Papers of James Clerk Maxwell , 2009 .

[37]  Tai-Ping Liu,et al.  Energy method for Boltzmann equation , 2004 .

[38]  Russel E. Caflisch,et al.  Shock profile solutions of the Boltzmann equation , 1982 .

[39]  François Golse,et al.  A classification of well‐posed kinetic layer problems , 1988 .

[40]  Tong Yang,et al.  Nonlinear Stability of Strong Rarefaction Waves for Compressible Navier-Stokes Equations , 2004, SIAM J. Math. Anal..

[41]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[42]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[43]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[44]  F. Golse,et al.  The Navier–Stokes limit for the Boltzmann equation , 2001 .