2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility

There is significant interest in the models for production of short gamma-ray bursts (GRBs). Until now, the number of known short GRBs with multi-wavelength afterglows has been small. While the Fermi GRB Monitor detects many GRBs relative to the Neil Gehrels Swift Observatory, the large localization regions makes the search for counterparts difficult. With the Zwicky Transient Facility (ZTF) recently achieving first light, it is now fruitful to use its combination of depth (mAB ∼ 20.6), field of view (≈47 square degrees), and survey cadence (every ∼3 days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B, which was recently announced by the Fermi GRB Monitor as a short GRB. ZTF imaged ≈2900 square degrees of the localization region, resulting in the coverage of 61.6% of the enclosed probability over two nights to a depth of mAB ∼ 20.5. We characterized 14 previously unidentified transients, and none were found to be consistent with a short GRB counterpart. This search with the ZTF shows it is an efficient camera for searching for coarsely localized short GRB and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption to its nominal cadence.

[1]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[2]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[3]  B. Metzger,et al.  Multimessenger Bayesian parameter inference of a binary neutron star merger , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[4]  Chris L. Fryer,et al.  A luminosity distribution for kilonovae based on short gamma-ray burst afterglows , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[6]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[7]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[8]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[9]  S. Smartt,et al.  Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[11]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[12]  Caltech,et al.  A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817 , 2017, Nature.

[13]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[14]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[15]  J. Prochaska,et al.  Electromagnetic evidence that SSS17a is the result of a binary neutron star merger , 2017, Science.

[16]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[17]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[18]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[19]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[20]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[21]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[22]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[23]  Vicky Kalogera,et al.  A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817 , 2017, 1710.05852.

[24]  Mariusz Gromadzki,et al.  The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days , 2017, 1710.05853.

[25]  Kazuya Matsubayashi,et al.  J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817 , 2017, 1710.05848.

[26]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[27]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[28]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[29]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[30]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta , 2017, 1710.05457.

[31]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[32]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[33]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[34]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[35]  Matteo Cantiello,et al.  Off-axis Prompt X-Ray Transients from the Cocoon of Short Gamma-Ray Bursts , 2017, 1709.01468.

[36]  Armin Rest,et al.  Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104 , 2017, 1706.00175.

[37]  A. J. van der Horst,et al.  THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT z = 0.1343 , 2016, 1608.08626.

[38]  A. Lien,et al.  AN ACHROMATIC BREAK IN THE AFTERGLOW OF THE SHORT GRB 140903A: EVIDENCE FOR A NARROW JET , 2016, 1605.03573.

[39]  Eric Burns,et al.  THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.

[40]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[41]  Edo Berger,et al.  A DECADE OF SHORT-DURATION GAMMA-RAY BURST BROADBAND AFTERGLOWS: ENERGETICS, CIRCUMBURST DENSITIES, AND JET OPENING ANGLES , 2015, 1509.02922.

[42]  D. Wei,et al.  The long-lasting optical afterglow plateau of short burst GRB 130912A , 2015, 1501.05025.

[43]  Brian D. Bue,et al.  THE NEEDLE IN THE 100 deg2 HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY , 2015, 1501.00495.

[44]  P. Duffell,et al.  FROM ENGINE TO AFTERGLOW: COLLAPSARS NATURALLY PRODUCE TOP-HEAVY JETS AND EARLY-TIME PLATEAUS IN GAMMA-RAY BURST AFTERGLOWS , 2014, 1407.8250.

[45]  H. Nagakura,et al.  JET COLLIMATION IN THE EJECTA OF DOUBLE NEUTRON STAR MERGERS: A NEW CANONICAL PICTURE OF SHORT GAMMA-RAY BURSTS , 2014, 1403.0956.

[46]  Peter E. Nugent,et al.  DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg2: iPTF13bxl AND GRB 130702A , 2013, 1307.5851.

[47]  E. Berger,et al.  THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS , 2013, 1307.0819.

[48]  K. Wiersema,et al.  A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B , 2013, Nature.

[49]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[50]  J. O. M. Ulchaey,et al.  DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 SQUARE DEGREES : iPTF 13 BXL AND GRB 130702 , 2013 .

[51]  S. Rosswog The multi-messenger picture of compact binary mergers , 2015, 1501.02081.

[52]  Tsvi Piran,et al.  SHORT VERSUS LONG AND COLLAPSARS VERSUS NON-COLLAPSARS: A QUANTITATIVE CLASSIFICATION OF GAMMA-RAY BURSTS , 2012, 1210.0068.

[53]  E. Wright,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS , 2012, 1205.0811.

[54]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[55]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[56]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[57]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[58]  P. N. Bhat,et al.  FERMI OBSERVATIONS OF GRB 090510: A SHORT–HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES , 2010, 1005.2141.

[59]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[60]  F. Pedichini,et al.  GRB 090426: the farthest short gamma-ray burst? , 2009, 0911.0046.

[61]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[62]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[63]  J. Cannizzo,et al.  A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK , 2009, 0901.3564.

[64]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[65]  P. Hall,et al.  GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION , 2008, 0811.1044.

[66]  L. Hanlon,et al.  GRB 070707: the first short gamma-ray burst observed by INTEGRAL , 2008, 0805.2880.

[67]  Zhibin Zhang,et al.  An analysis of the durations of Swift gamma-ray bursts , 2007, 0708.4049.

[68]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[69]  N. Gehrels,et al.  Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift , 2006, astro-ph/0612031.

[70]  S. Golenetskii,et al.  GRB 060313: A New Paradigm for Short-Hard Bursts? , 2006, astro-ph/0605005.

[71]  J. Fynbo,et al.  The Faint Afterglow and Host Galaxy of the Short-Hard GRB 060121 , 2006, astro-ph/0603282.

[72]  D. Frail,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006, astro-ph/0601455.

[73]  J. Norris,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006, astro-ph/0601190.

[74]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[75]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[76]  J. Granot,et al.  The Evolution of a Structured Relativistic Jet and Gamma-Ray Burst Afterglow Light Curves , 2003, astro-ph/0303174.

[77]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[78]  M. Rees,et al.  Spectral Features from Ultrarelativistic Ions in Gamma-Ray Bursts? , 1998 .

[79]  P. S. Astronomy,et al.  Spectral Features from Ultrarelativistic Ions in Gamma-Ray Bursts? , 1998, astro-ph/9804119.

[80]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[81]  M. Rees,et al.  Shocked by GRB 970228: the afterglow of a cosmological fireball , 1997, astro-ph/9704153.

[82]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[83]  R. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .