The construction of extensible polynomial lattice rules with small weighted star discrepancy
暂无分享,去创建一个
[1] J HickernellF,et al. Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .
[2] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[3] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[4] Harald Niederreiter,et al. The Existence of Good Extensible Polynomial Lattice Rules , 2003 .
[5] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[6] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[7] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[8] Pierre L’Ecuyer,et al. Polynomial Integration Lattices , 2004 .
[9] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[10] Peter Kritzer,et al. Constructions of general polynomial lattice rules based on the weighted star discrepancy , 2007, Finite Fields Their Appl..
[11] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[12] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[13] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[14] Josef Dick,et al. Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..
[15] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[16] S. Joe. Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .
[17] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..