Die Rostocker Methode zur qualitativen und quantitativen Bewertung von Intraokularlinsen

Zusammenfassung Hintergrund Zur quantitativen und qualitativen Bewertung der Abbildungseigenschaften von IOLs können mittels einer optischen Bank axiale Querschnittsbilder aus der 3-dimensionalen Lichtverteilung erstellt werden, wie sie von Lichtblattaufnahmen in Fluoresceinbädern bekannt sind. In dieser Arbeit wird ein neuer Bildverarbeitungsalgorithmus zur Verbesserung der Qualität solcher generierten axialen Querschnittsbilder vorgestellt und beide Methoden werden miteinander verglichen. Material und Methoden Die 3-dimensionale Punktspreizfunktion einer diffraktiven trifokalen IOL (AT LISA tri 839MP, Carl Zeiss Meditec AG, Jena, Deutschland) wurde an einer in Rostock entwickelten optischen Bank für unterschiedliche Pupillendurchmesser aufgenommen. Anschließend wurde ein speziell angepasster Bildverarbeitungsalgorithmus auf die Messungen angewandt, der die Generierung von Durchfokuskurven erlaubt. Zusätzlich wurden Querschnittsbilder der untersuchten IOL unter Verwendung der Lichtblattmethode in einem Fluoresceinbad aufgenommen. Ergebnisse Die Studie zeigt deutlich die Überlegenheit der neu entwickelten Methode in Bezug auf die Bildqualität gegenüber der Lichtblattmethode. Neben den einzelnen Fokuspunkten können in den Querschnittsbildern der neuen Methode sowohl feine Fokusstrukturen als auch Halos sichtbar gemacht werden. In den generierten Durchfokuskurven lassen sich 3 Intensitätsspitzen erkennen, die den Nah-, Intermediär- und Fernfokus der getesteten MIOL darstellen und mittels Lichtblattmethoden nicht darstellbar sind. Schlussfolgerung Das Zusammenspiel der optischen Bank mit dem entwickelten Bildverarbeitungsalgorithmus ermöglicht ein detaillierteres Verständnis der Bildentstehung und Falschlichterscheinungen von IOLs, was mit der bisherigen Lichtblattmethode aufgrund technischer Beschränkungen nur begrenzt möglich war. Darüber hinaus lassen sich weitere Größen wie z. B. die Durchfokuskurve quantitativ ableiten. Abstract Background For quantitative and qualitative evaluation of the imaging properties of IOLs, axial cross-sectional images can be obtained from the 3-dimensional light distribution by means of an optical bench, as is known from light sheet recordings in fluorescein baths. This paper presents a new image-processing algorithm to enhance the quality of generated axial cross-sectional images, and the two methods are then compared. Material and Methods The 3-dimensional point spread function of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec AG, Jena, Germany) was recorded on an optical bench developed in Rostock for different pupil diameters. A specially adapted image processing algorithm was then applied to the measurements, allowing through-focus curves to be generated. In addition, cross-sectional images of the IOLs studied were acquired using the light sheet method in a fluorescein bath. Results The study clearly shows the superiority of the newly developed method over the light sheet method in terms of image quality. In addition to the individual focal points, fine focal structures as well as halos can be made visible in the cross-sectional images obtained using the new method. In the generated through-focus curves, 3 intensity peaks can be identified, which represent the near, intermediate and far focus of the tested MIOL and cannot be represented by light sheet methods. Conclusion The interaction of the optical bench with the developed image processing algorithm allows a more detailed understanding of the image formation and false light phenomena of IOLs, which was restricted by the technical limitations of the existing light sheet method. In addition, other quantities such as the through-focus curve can be derived quantitatively.

[1]  H. Luedtke,et al.  Impact of Decentration and Tilt on Spherical, Aberration Correcting, and Specific Aspherical Intraocular Lenses: An Optical Bench Analysis , 2022, Ophthalmic Research.

[2]  O. Stachs,et al.  Method for the generation and visualization of cross-sectional images of three-dimensional point spread functions for rotationally symmetric intraocular lenses. , 2022, Biomedical optics express.

[3]  M. Knorz,et al.  Visualization of Forward Light Scatter in Opacified Intraocular Lenses and Straylight Assessment , 2021, Diagnostics.

[4]  M. S. Millán,et al.  Through-Focus Energy Efficiency and Longitudinal Chromatic Aberration of Three Presbyopia-Correcting Intraocular Lenses , 2020, Translational vision science & technology.

[5]  Satish S. Modi,et al.  Visual and Patient-Reported Outcomes of a Diffractive Trifocal Intraocular Lens Compared with Those of a Monofocal Intraocular Lens. , 2020, Ophthalmology.

[6]  R. Khoramnia,et al.  Ray propagation imaging and optical quality evaluation of different intraocular lens models , 2020, PloS one.

[7]  Zbigniew Jaroszewicz,et al.  Model of the light sword intraocular lens: in-vitro comparative studies. , 2019, Biomedical optics express.

[8]  Achim Langenbucher,et al.  Visualization of Light Propagation with Multifocal Intraocular Lenses Using the Ouzo Effect , 2019, BioMed research international.

[9]  S. Wahl,et al.  Comparison of two devices to simulate vision with intraocular lenses , 2019, Clinical ophthalmology.

[10]  O. Stachs,et al.  [Pre-clinical Evaluation of Intraocular Lenses through Simulated Implantation]. , 2018, Klinische Monatsblatter fur Augenheilkunde.

[11]  J. Alió,et al.  Multifocal intraocular lenses: Types, outcomes, complications and how to solve them , 2017, Taiwan journal of ophthalmology.

[12]  E. Bezus,et al.  Additive manufacturing of a trifocal diffractive-refractive lens , 2016 .

[13]  G. Rubin,et al.  Quality of vision after bilateral multifocal intraocular lens implantation: a randomized trial--AT LISA 809M versus AcrySof ReSTOR SN6AD1. , 2015, Ophthalmology (Rochester, Minn.).

[14]  Francisco Alba-Bueno,et al.  Energy efficiency of a new trifocal intraocular lens , 2014 .

[15]  David P Piñero,et al.  Comparison of a new refractive multifocal intraocular lens with an inferior segmental near add and a diffractive multifocal intraocular lens. , 2012, Ophthalmology.

[16]  Henk Weeber,et al.  Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses. , 2008, Journal of refractive surgery.

[17]  J. Davison,et al.  History and development of the apodized diffractive intraocular lens , 2006, Journal of cataract and refractive surgery.

[18]  Marrie van der Mooren,et al.  A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. , 2002, Journal of refractive surgery.

[19]  G. Ravalico,et al.  Analysis of light energy distribution by multifocal intraocular lenses through an experimental optical model , 1998, Journal of cataract and refractive surgery.

[20]  Jean Maufoy,et al.  New interferometric method to assess intraocular lens characteristics , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[21]  I. Pascual,et al.  Application of the Ronchi test to intraocular lenses: A comparison of theoretical and measured results. , 1993, Applied optics.

[22]  M. Simpson Diffractive multifocal intraocular lens image quality , 1992 .

[23]  B. Chichkov,et al.  [Optimisation of the visualisation technique for optical paths through intraocular lenses for characterisation of multifocal imaging properties of Fresnel-zone plates]. , 2014, Klinische Monatsblatter fur Augenheilkunde.

[24]  A. Amigó,et al.  Q Factor Presbylasik. Fundamentals and therapeutic approach , 2012 .