Newton's Method and Symmetry for Semilinear Elliptic PDE on the Cube

We seek discrete approximations to solutions u :Ω → R of semilinear elliptic PDE of the form Δu + fs(u )=0 , wherefs is a one-parameter family of nonlinear functions and Ω is a domain in R d . The main achievement of this paper is the approximation of solutions to the PDE on the cube Ω=( 0 ,π ) 3 ⊆ R 3 . There are 323 possible isotropy subgroups of functions on the cube, which fall into 99 conjugacy classes. The bifurcations with symmetry in this problem are quite interesting, including many with 3-dimensional critical eigenspaces. Our automated symmetry analysis is necessary with so many isotropy subgroups and bifurcations among them, and it allows our code to follow one branch in each equivalence class that is created at a bifurcation point. Our most complicated result is the complete analysis of a degenerate bifurcation with a 6-dimensional critical eigenspace. This article extends our work in (Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), pp. 2531-2556), wherein we combined symmetry analysis with modified implementations of the gradient Newton-Galerkin algorithm (GNGA (J. M. Neuberger and J. W. Swift, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), pp. 801-820)) to automatically generate bifurcation diagrams and solution graphics for small, discrete problems with large symmetry groups. The code described in the current paper is efficiently implemented in parallel, allowing us to investigate a relatively fine-mesh discretization of the cube. We use the methodology and corresponding library presented in our previous paper (Int. J. Parallel Program., 40 (2012), pp. 443-464).

[1]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[2]  Nándor Sieben,et al.  An MPI Implementation of a Self-Submitting Parallel Job Queue , 2012, International Journal of Parallel Programming.

[3]  Victor A. Galaktionov,et al.  Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics , 2006 .

[4]  Nándor Sieben,et al.  Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region , 2006, SIAM J. Appl. Dyn. Syst..

[5]  John M. Neuberger,et al.  Nonlinear Elliptic Partial Difference Equations on Graphs , 2006, Exp. Math..

[6]  Automating Symmetry-Breaking Calculations , 2004 .

[7]  Joel E. Mcphee About the Companion Web Site , 2014 .

[8]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[9]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[10]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[11]  J. Crawford D4+T2 mode interactions and hidden rotational symmetry , 1993, patt-sol/9311004.

[12]  Jianxin Zhou,et al.  Boundary Element Methods with Applications to Nonlinear Problems , 2010 .

[13]  Andrew J. Wathen,et al.  The Finite Element Approximation of Semilinear Elliptic Partial Differential Equations with Critical Exponents in the Cube , 1999, SIAM J. Sci. Comput..

[14]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[15]  Jianxin Zhou Saddle critical point analysis and computation , 2005 .

[16]  Jianxin Zhou,et al.  A Local Minimax-Newton Method for Finding Multiple Saddle Points with Symmetries , 2004, SIAM J. Numer. Anal..

[17]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[18]  I. Labouriau,et al.  Spatial hidden symmetries in pattern formation , 1999 .

[19]  Jianxin Zhou,et al.  An Efficient and Stable Method for Computing Multiple Saddle Points with Symmetries , 2005, SIAM J. Numer. Anal..

[20]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[21]  John M. Neuberger,et al.  Newton's Method and Morse Index for semilinear Elliptic PDEs , 2001, Int. J. Bifurc. Chaos.

[22]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[23]  John M. Neuberger,et al.  Computing eigenfunctions on the Koch Snowflake: a new grid and symmetry , 2006, 1010.0775.

[24]  T. K. Callahan,et al.  Symmetry-breaking bifurcations on cubic lattices , 1997 .

[25]  A. Castro,et al.  A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero , 1997 .