Partition-Symmetrical Entropy Functions
暂无分享,去创建一个
[1] Frantisek Matús,et al. Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.
[2] Andrei E. Romashchenko,et al. On essentially conditional information inequalities , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[3] Raymond W. Yeung,et al. On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.
[4] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[5] G. Ziegler. Lectures on Polytopes , 1994 .
[6] N. White. Theory of Matroids , 2008 .
[7] Zhen Zhang,et al. A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.
[8] Randall Dougherty,et al. Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.
[9] Dongning Guo,et al. Entropy functions and determinant inequalities , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[10] Nicholas Pippenger,et al. The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.
[11] F. Matús. PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .
[12] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[13] Raymond W. Yeung,et al. Two-partition-symmetrical entropy function regions , 2013, 2013 IEEE Information Theory Workshop (ITW).
[14] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[15] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[16] Joseph J. Rotman. A first course in abstract algebra : with applications , 2006 .
[17] H. Weyl. Permutation Groups , 2022 .
[18] Carles Padró,et al. Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.
[19] Raymond W. Yeung,et al. A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[20] Raymond W. Yeung,et al. Information Theory and Network Coding , 2008 .
[21] Carles Padró,et al. Optimal Non-perfect Uniform Secret Sharing Schemes , 2014, CRYPTO.
[22] Carles Padró,et al. Secret sharing schemes with bipartite access structure , 2000, IEEE Trans. Inf. Theory.
[23] R. Yeung,et al. Network coding theory , 2006 .
[24] H. Q. Nguyen. Semimodular functions and combinatorial geometries , 1978 .
[25] F. Matús,et al. Two Constructions on Limits of Entropy Functions , 2007, IEEE Transactions on Information Theory.
[26] Zhen Zhang,et al. On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.
[27] Nikolai K. Vereshchagin,et al. Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..
[28] Yuval Ishai,et al. Lossy Chains and Fractional Secret Sharing , 2013, STACS.
[29] Terence Chan. Recent Progresses in Characterising Information Inequalities , 2011, Entropy.
[30] Ho-Leung Chan,et al. A combinatorial approach to information inequalities , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).
[31] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[32] Nikolai K. Vereshchagin,et al. A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..
[33] Weidong Xu,et al. A projection method for derivation of non-Shannon-type information inequalities , 2008, 2008 IEEE International Symposium on Information Theory.
[34] Alex J. Grant,et al. Dualities Between Entropy Functions and Network Codes , 2008, IEEE Transactions on Information Theory.
[35] Andrei E. Romashchenko,et al. On the non-robustness of essentially conditional information inequalities , 2012, 2012 IEEE Information Theory Workshop.
[36] Randall Dougherty,et al. Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.
[37] Jessica Ruth Metcalf-Burton. Information Rates of Minimal Non-Matroid-Related Access Structures , 2008, ArXiv.
[38] Adi Shamir,et al. How to share a secret , 1979, CACM.
[39] Raymond W. Yeung,et al. A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.
[40] Raymond W. Yeung,et al. Characterizing the entropy function region via extreme rays , 2012, 2012 IEEE Information Theory Workshop.
[41] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[42] Te Sun Han. Nonnegative Entropy Measures of Multivariate Symmetric Correlations , 1978, Inf. Control..
[43] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[44] Andrei E. Romashchenko,et al. Conditional Information Inequalities for Entropic and Almost Entropic Points , 2012, IEEE Transactions on Information Theory.
[45] Jayant Apte,et al. Symmetry in network coding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[46] James G. Oxley,et al. Matroid theory , 1992 .
[47] Raymond W. Yeung. Facets of entropy , 2015, Commun. Inf. Syst..
[48] Carles Padró,et al. Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.
[49] Chen He,et al. Average entropy functions , 2009, 2009 IEEE International Symposium on Information Theory.