Partition-Symmetrical Entropy Functions

Let N = (1,..., n). The entropy function h of a set of n discrete random variables (X<sub>i</sub> : i ∈ N ) is a 2<sup>n</sup>-dimensional vector whose entries are h(A) △ H(X ), A c N, the (joint) entropies of the subsets of the set of n random variables with H(X<sub>Ø</sub>) = 0 by convention. The set of all entropy functions for n discrete random variables, denoted by Γ<sub>n</sub>*, is called the entropy region for n. Characterization of Γ<sub>n</sub>* and its closure Γ<sub>n</sub>* are well-known open problems in information theory. They are important not only because they play key roles in information theory problems but also they are related to other subjects in mathematics and physics. In this paper, we consider partitionsymmetrical entropy functions. Let p = (N<sub>1</sub>,..., N<sub>t</sub>) be a t-partition of N. An entropy function his called p-symmetrical if for all A, B ⊂ N, h(A) = h(B) whenever |A∩N<sub>i</sub>| = |B∩N<sub>i</sub>|, i = 1,..., t. The set of all the p-symmetrical entropy functions, denoted by ψ<sub>p</sub>*, is called p-symmetrical entropy function region. We prove that ψ<sub>p</sub>*, the closure of ψ<sub>p</sub>*, is completely characterized by Shannon-type information inequalities if and only if p is the 1-partition or a 2-partition with one of its blocks being a singleton. The characterization of the partition-symmetrical entropy functions can be useful for solving some information theory and related problems where symmetry exists in the structure of the problems.

[1]  Frantisek Matús,et al.  Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.

[2]  Andrei E. Romashchenko,et al.  On essentially conditional information inequalities , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[3]  Raymond W. Yeung,et al.  On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.

[4]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[5]  G. Ziegler Lectures on Polytopes , 1994 .

[6]  N. White Theory of Matroids , 2008 .

[7]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[8]  Randall Dougherty,et al.  Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.

[9]  Dongning Guo,et al.  Entropy functions and determinant inequalities , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[10]  Nicholas Pippenger,et al.  The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.

[11]  F. Matús PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .

[12]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[13]  Raymond W. Yeung,et al.  Two-partition-symmetrical entropy function regions , 2013, 2013 IEEE Information Theory Workshop (ITW).

[14]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[15]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[16]  Joseph J. Rotman A first course in abstract algebra : with applications , 2006 .

[17]  H. Weyl Permutation Groups , 2022 .

[18]  Carles Padró,et al.  Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.

[19]  Raymond W. Yeung,et al.  A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[20]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[21]  Carles Padró,et al.  Optimal Non-perfect Uniform Secret Sharing Schemes , 2014, CRYPTO.

[22]  Carles Padró,et al.  Secret sharing schemes with bipartite access structure , 2000, IEEE Trans. Inf. Theory.

[23]  R. Yeung,et al.  Network coding theory , 2006 .

[24]  H. Q. Nguyen Semimodular functions and combinatorial geometries , 1978 .

[25]  F. Matús,et al.  Two Constructions on Limits of Entropy Functions , 2007, IEEE Transactions on Information Theory.

[26]  Zhen Zhang,et al.  On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.

[27]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[28]  Yuval Ishai,et al.  Lossy Chains and Fractional Secret Sharing , 2013, STACS.

[29]  Terence Chan Recent Progresses in Characterising Information Inequalities , 2011, Entropy.

[30]  Ho-Leung Chan,et al.  A combinatorial approach to information inequalities , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[31]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[32]  Nikolai K. Vereshchagin,et al.  A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..

[33]  Weidong Xu,et al.  A projection method for derivation of non-Shannon-type information inequalities , 2008, 2008 IEEE International Symposium on Information Theory.

[34]  Alex J. Grant,et al.  Dualities Between Entropy Functions and Network Codes , 2008, IEEE Transactions on Information Theory.

[35]  Andrei E. Romashchenko,et al.  On the non-robustness of essentially conditional information inequalities , 2012, 2012 IEEE Information Theory Workshop.

[36]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[37]  Jessica Ruth Metcalf-Burton Information Rates of Minimal Non-Matroid-Related Access Structures , 2008, ArXiv.

[38]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[39]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[40]  Raymond W. Yeung,et al.  Characterizing the entropy function region via extreme rays , 2012, 2012 IEEE Information Theory Workshop.

[41]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[42]  Te Sun Han Nonnegative Entropy Measures of Multivariate Symmetric Correlations , 1978, Inf. Control..

[43]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[44]  Andrei E. Romashchenko,et al.  Conditional Information Inequalities for Entropic and Almost Entropic Points , 2012, IEEE Transactions on Information Theory.

[45]  Jayant Apte,et al.  Symmetry in network coding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[46]  James G. Oxley,et al.  Matroid theory , 1992 .

[47]  Raymond W. Yeung Facets of entropy , 2015, Commun. Inf. Syst..

[48]  Carles Padró,et al.  Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.

[49]  Chen He,et al.  Average entropy functions , 2009, 2009 IEEE International Symposium on Information Theory.