V-optimal designs for heteroscedastic regression

[1]  Douglas P. Wiens,et al.  Designs for weighted least squares regression, with estimated weights , 2013, Stat. Comput..

[2]  Varun Grover,et al.  Active Learning in Multi-armed Bandits , 2008, ALT.

[3]  L. Imhof,et al.  Bayesian and maximin optimal designs for heteroscedastic regression models , 2005 .

[4]  N. N. Chan,et al.  Lp-optimality for regression designs with heteroscedastic errors , 2001 .

[5]  B. Heiligers Computing E-optimal polynomial regression designs , 1996 .

[6]  W. Wong On the equivalence of D and G-optimal designs in heteroscedastic models , 1995 .

[7]  P. Mykland,et al.  Nonlinear Experiments: Optimal Design and Inference Based on Likelihood , 1993 .

[8]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[9]  Douglas P. Wiens,et al.  Designs for approximately linear regression: Maximizing the minimum coverage probability of confidence ellipsoids , 1993 .

[10]  F. Pukelsheim,et al.  Efficient rounding of approximate designs , 1992 .

[11]  Friedrich Pukelsheim,et al.  Optimal weights for experimental designs on linearly independent support points , 1991 .

[12]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[13]  R. Jennrich,et al.  Optimal designs for dose response experiments in cancer research , 1979 .

[14]  H. Guess,et al.  Uncertainty estimates for low-dose-rate extrapolations of animal carcinogenicity data. , 1977, Cancer research.

[15]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[16]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[17]  J. Kiefer Optimum Experimental Designs V, with Applications to Systematic and Rotatable Designs , 1961 .

[18]  F. J. Anscombe,et al.  Rejection of Outliers , 1960 .