Applications of lattice QCD techniques for condensed matter systems

We review the application of lattice QCD techniques, most notably the Hybrid Monte-Carlo (HMC) simulations, to first-principle study of tight-binding models of crystalline solids with strong inter-electron interactions. After providing a basic introduction into the HMC algorithm as applied to condensed matter systems, we review HMC simulations of graphene, which in the recent years have helped to understand the semi-metal behavior of clean suspended graphene at the quantitative level. We also briefly summarize other novel physical results obtained in these simulations. Then we comment on the applicability of Hybrid Monte-Carlo to topological insulators and Dirac and Weyl semi-metals and highlight some of the relevant open physical problems. Finally, we also touch upon the lattice strong-coupling expansion technique as applied to condensed matter systems.

[1]  M. Katsnelson,et al.  Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. , 2013, Physical review letters.

[2]  E. Conrad,et al.  Semiconducting Graphene from Highly Ordered Substrate Interactions. , 2015, Physical review letters.

[3]  Oleg V. Yazyev,et al.  Defect-induced magnetism in graphene , 2007 .

[4]  A. Francis,et al.  Pion quasiparticle in the low-temperature phase of QCD , 2015, 1509.06241.

[5]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[6]  R. Brower,et al.  Hybrid Monte Carlo Simulation of Graphene on the Hexagonal Lattice , 2011, 1204.5424.

[7]  Yi Zhang,et al.  Topological insulators in three dimensions from spontaneous symmetry breaking , 2009, 0904.0690.

[8]  V. A. Miransky,et al.  Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals , 2015, 1503.00732.

[9]  E. Mishchenko,et al.  Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly , 2007, 0709.4245.

[10]  Thomas Luu,et al.  Quantum Monte Carlo Calculations for Carbon Nanotubes , 2015, 1511.04918.

[11]  T. Lahde,et al.  Lattice field theory simulations of graphene , 2009, 0901.0584.

[12]  T. Lahde,et al.  Critical exponents of the semimetal-insulator transition in graphene: A Monte Carlo study , 2009, 0905.1320.

[13]  V. Aji,et al.  Excitonic phases from Weyl semimetals. , 2012, Physical review letters.

[14]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[15]  T. Lahde,et al.  Signatures of a gap in the conductivity of graphene , 2010, 1005.5089.

[16]  M. Katsnelson,et al.  Many-body effects on graphene conductivity: Quantum Monte Carlo calculations , 2016, 1601.05315.

[17]  S. V. Morozov,et al.  Dirac cones reshaped by interaction effects in suspended graphene , 2011 .

[18]  Simon Hands,et al.  Quantum critical behavior in a graphenelike model , 2008, 0806.4877.

[19]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[20]  Guohong Li,et al.  Scanning tunneling spectroscopy of graphene on graphite. , 2009, Physical review letters.

[21]  A. Sekine,et al.  Weyl Semimetal in the Strong Coulomb Interaction Limit , 2013, 1309.1079.

[22]  G. Gu,et al.  Observation of the chiral magnetic effect in ZrTe , 2014 .

[23]  S. Adam,et al.  Interaction-Driven Metal-Insulator Transition in Strained Graphene. , 2015, Physical review letters.

[24]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[25]  C. Gattringer,et al.  Dual representation for 1 +1 dimensional fermions interacting with 3 +1 dimensional U(1) gauge fields , 2015, 1512.06692.

[26]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[27]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[28]  Jing-Rong Wang,et al.  Absence of dynamical gap generation in suspended graphene , 2012, 1202.1014.

[29]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[30]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[31]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[32]  O. Vafek,et al.  Coulomb interaction, ripples, and the minimal conductivity of graphene. , 2007, Physical review letters.

[33]  D. V. Khveshchenko Massive Dirac fermions in single-layer graphene , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Xiao-Liang Qi,et al.  Topological Mott insulators. , 2007, Physical review letters.

[35]  Shou-Cheng Zhang,et al.  Charge Density Waves and Axion Strings from Weyl Semimetals , 2012, 1207.5234.

[36]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[37]  Z. Meng,et al.  Quantum phase transitions in the Kane-Mele-Hubbard model , 2011, 1111.3949.

[38]  I. Sodemann,et al.  Interaction corrections to the polarization function of graphene , 2012, 1206.3519.

[39]  M. M. Vazifeh,et al.  Electromagnetic response of Weyl semimetals. , 2013, Physical review letters.

[40]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[41]  M. I. Polikarpov,et al.  Monte-Carlo study of the electron transport properties of monolayer graphene within the tight-binding model , 2012, 1206.0619.

[42]  Sugar,et al.  New algorithm for the numerical simulation of fermions. , 1986, Physical review. B, Condensed matter.

[43]  Carleton DeTar,et al.  Lattice methods for quantum chromodynamics , 2006 .

[44]  K. Novoselov,et al.  How close can one approach the Dirac point in graphene experimentally? , 2012, Nano letters.

[45]  R. Nandkishore,et al.  Weyl semimetals with short-range interactions , 2013, 1311.7133.

[46]  V. Gusynin,et al.  Gap generation and semimetal-insulator phase transition in graphene , 2009, 0911.4878.

[47]  M. Katsnelson,et al.  Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study. , 2015, Physical review letters.

[48]  A. Polyakov Compact gauge fields and the infrared catastrophe , 1975 .

[49]  Dominik Smith,et al.  Monte-Carlo simulation of the tight-binding model of graphene with partially screened Coulomb interactions , 2014, 1403.3620.

[50]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[51]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[52]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[53]  B. Petersson,et al.  Two-color QCD with non-zero chiral chemical potential , 2015, 1503.06670.

[54]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[55]  M. Ulybyshev,et al.  Numerical simulation of graphene in an external magnetic field , 2013, 1308.2814.

[56]  Y. Araki Chiral symmetry breaking in monolayer graphene by strong coupling expansion of compact and non-compact U(1) lattice gauge theories , 2010, 1010.0847.

[57]  J. Drut,et al.  Is graphene in vacuum an insulator? , 2008, Physical review letters.

[58]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[59]  M. Katsnelson,et al.  Vacuum polarization and screening of supercritical impurities in graphene. , 2007, Physical review letters.

[60]  C. Şen,et al.  Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study. , 2008, Physical review letters.

[61]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[62]  F. Assaad,et al.  Phase diagram of the Kane-Mele-Coulomb model , 2014, 1407.2708.

[63]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[64]  D. Son,et al.  Renormalization group flow of quartic perturbations in graphene: Strong coupling and large- N limits , 2007, 0710.1315.

[65]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[66]  M I Katsnelson,et al.  Monte Carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential. , 2013, Physical review letters.

[67]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[68]  Congjun Wu,et al.  Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model , 2010, 1011.5858.

[69]  M I Katsnelson,et al.  Strength of effective Coulomb interactions in graphene and graphite. , 2011, Physical review letters.

[70]  V. A. Miransky,et al.  Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2+1 Dimensions. , 1994, Physical review letters.

[71]  J. Sexton,et al.  Hamiltonian evolution for the hybrid Monte Carlo algorithm , 1992 .

[72]  M. Kharitonov Phase diagram for the ν=0 quantum Hall state in monolayer graphene , 2011, 1103.6285.

[73]  Magnetic field driven metal insulator phase transition in planar systems , 2002, cond-mat/0202422.

[74]  R. T. Scalettar,et al.  Quantum Monte Carlo study of the two-dimensional fermion Hubbard model , 2009, 0903.2519.

[75]  F. Nori,et al.  Instabilities of the AA-stacked graphene bilayer. , 2011, Physical review letters.

[76]  Yong Baek Kim,et al.  Topological and magnetic phases of interacting electrons in the pyrochlore iridates , 2011, 1105.6108.

[77]  Michael Creutz,et al.  Quarks, Gluons and Lattices , 1984 .

[78]  J C Stoddart,et al.  Quarks, Gluons and Lattices: Cambridge Monographs on Mathematical Physics , 1986 .

[79]  Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach) , 1993, hep-th/9311105.

[80]  Fermi velocity renormalization and dynamical gap generation in graphene , 2013, 1308.6199.

[81]  O. Vafek,et al.  Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential , 2007, 0710.2907.