Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model

Abstract The paper provides an advanced creep model which gives reasonable descriptions of the effects of damage and stress state from micromechanics viewpoint. A modified creep ductility exhaustion approach is employed to calculate the creep damage. Based on the proposed creep-damage model, numerical analyses of creep crack growth are conducted with a failure simulation technique. The simulated results are compared favorably with available experimental data for compact tension and thumbnail crack specimens for 316 stainless steel tested at 600 °C. The comparisons show the excellent capability of the proposed model in predicting the crack growth rate and progressive crack profiles.

[1]  Noel P. O’Dowd,et al.  Creep crack growth prediction using a damage based approach , 2003 .

[2]  S. Murakami,et al.  Computational methods for creep fracture analysis by damage mechanics , 2000 .

[3]  Wei Sun,et al.  Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650 °C , 2010 .

[4]  A. Becker,et al.  Damage mechanics based predictions of creep crack growth in 316 stainless steel , 2010 .

[5]  Yann Kayser,et al.  Leak Before Break procedure: Recent modification of RCC-MR A16 appendix and proposed improvements , 2008 .

[6]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[7]  T. H. Hyde,et al.  Creep crack growth in 316 stainless steel at 600°C , 1988 .

[8]  X. Lin,et al.  Finite element modelling of fatigue crack growth of surface cracked plates , 1999 .

[9]  Robert A. Ainsworth,et al.  High Temperature Component Life Assessment , 1994 .

[10]  Matthias Sester,et al.  A Micromechanical Model for Creep Damage and Its Application to Crack Growth in a 12% Cr Steel , 1997 .

[11]  Wei Sun,et al.  Creep crack growth data and prediction for a P91 weld at 650 °C , 2010 .

[12]  Andreas Klenk,et al.  A new method of strength calculation and lifetime prediction of pipe bends operating in the creep range , 2005 .

[13]  K. Nikbin,et al.  Creep crack growth simulations in 316H stainless steel , 2008 .

[14]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[15]  Kåre Hellan,et al.  An approximate study of void expansion by ductility or creep , 1975 .

[16]  Sumio Murakami,et al.  Mesh-Dependence in Local Approach to Creep Fracture , 1995 .

[17]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[18]  M. Yatomi,et al.  Issues relating to numerical modelling of creep crack growth , 2010 .

[19]  M. W. Spindler,et al.  The multiaxial creep ductility of austenitic stainless steels , 2004 .

[20]  X. Lin,et al.  FINITE ELEMENT MODELLING OF FATIGUE CRACK GROWTH OF SURFACE CRACKED PLATES. PART II : CRACK SHAPE CHANGE , 1999 .

[21]  John W. Hutchinson,et al.  Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation , 1983 .

[22]  Yan Liu,et al.  Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis , 1998 .

[23]  G. Cailletaud,et al.  Creep Damage in 17–12 SPH Stainless Steel Notched Specimens: Metallographical Study and Numerical Modeling , 1987 .

[24]  Noel P. O’Dowd,et al.  Modelling of damage development and failure in notched-bar multiaxial creep tests , 2004 .

[25]  T. Hyde,et al.  Determination of creep and damage properties for P92 at 675 °C , 2011 .

[26]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[27]  David R Hayhurst,et al.  Development of continuum damage in the creep rupture of notched bars , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  I. Goodall Multiaxial Data Requirements for Structural Integrity Assessments in Creep , 1986 .

[29]  N. O'Dowd,et al.  Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel , 2006 .

[30]  G. A. Webster,et al.  Prediction of creep crack growth from uniaxial creep data , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  M. Ashby,et al.  On the power-law creep equation , 1980 .

[32]  Jianming Gong,et al.  Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis , 2011 .

[33]  O. Ancelet,et al.  Mechanical behaviour of HTR materials: Developments in support of defect assessment, structural integrity and lifetime evaluation , 2010 .

[34]  M. Mclean,et al.  MODELING THE EFFECTS OF DAMAGE AND MICROSTRUCTURAL EVOLUTION ON THE CREEP BEHAVIOR OF ENGINEERING ALLOYS , 2000 .

[35]  Yun‐Jae Kim,et al.  Creep failure simulations of 316H at 550 °C: Part I – A method and validation , 2011 .

[36]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[37]  Gregory J. Rodin,et al.  A self-consistent analysis of a creeping matrix with aligned cracks , 1988 .