Mission analysis and design of a bistatic synthetic aperture radar on board a small satellite

Abstract This paper is aimed at a feasibility study of a new space-based observation technique: bistatic synthetic aperture radar, e.g. an active microwave sensor operating with separated transmitting and receiving antennae. Assuming ESA ENVISAT ASAR as main mission, a small satellite (BISSAT) equipped with a receiving-only antenna and flying in formation with ENVISAT is studied in details. In addition to conventional ASAR images, echoes gathered by BISSAT form an additional data set. They offer an added value to ENVISAT scientific exploitation, as they could be used for novel mapping applications, taking into account their unique pointing characteristics and differences in terrain-scattering properties as a function of antennae separation. A numerical simulation is conducted to perform a mission study. The antennae separation along the orbit is selected according to both applicative and ENVISAT safety requirements. The BISSAT attitude and pointing requested for swath overlap is then presented. Finally, a preliminary design of microwave payload and platform is outlined.

[1]  Antonio Moccia,et al.  An integrated approach to geometric precision processing of spaceborne high-resolution sensors , 1986 .

[2]  Antonio Moccia,et al.  DEM generation by means of ERS tandem data , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  R. Goldstein,et al.  Interferometric radar measurement of ocean surface currents , 1987, Nature.

[4]  A. I. Zakharov,et al.  BISTATIC RADAR AS A TOOL FOR EARTH INVESTIGATION USING SMALL SATELLITES , 1996 .

[5]  Claudio Galeazzi,et al.  PRIMA: A new, competitive small satellite platform , 2000 .

[6]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[7]  John C. Curlander,et al.  Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  G. Cascioli,et al.  Central electronics subassembly of ENVISAT-1 ASAR: functions, performance and architecture , 1996, Remote Sensing.

[9]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[10]  Søren Nørvang Madsen,et al.  Estimating the Doppler centroid of SAR data , 1989 .

[11]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[12]  Paris W. Vachon,et al.  Validation of along-track interferometric SAR measurements of ocean surface waves , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[14]  Antonio Moccia,et al.  Twin satellite orbital and Doppler parameters for Global Topographic Mapping , 1995 .

[15]  R. J. Doviak,et al.  Bistatic-Radar Detection of High-Altitude Clear-Air Atmospheric Targets , 1972 .

[16]  M.R. Ito,et al.  A chirp scaling approach for processing squint mode SAR data , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Alberto Moreira,et al.  Suppressing the azimuth ambiguities in synthetic aperture radar images , 1993, IEEE Trans. Geosci. Remote. Sens..

[18]  A. Farina,et al.  Tracking function in bistatic and multistatic radar systems , 1986 .

[19]  Sergio Vetrella,et al.  A bistatic SAR mission for earth observation based on a small satellite , 1996 .

[20]  Antonio Moccia,et al.  A tethered interferometric synthetic aperture radar (SAR) for a topographic mission , 1992, IEEE Trans. Geosci. Remote. Sens..

[21]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[22]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[23]  G. Tyler,et al.  Bistatic-Radar Observation of Long-Period, Directional Ocean-Wave Spectra with Loran A , 1970, Science.