Cerebrospinal fluid biomarkers for normal pressure hydrocephalus

[1]  Aijuan Yan,et al.  Increased Cerebrospinal Fluid Levels of Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Chitinase-3-Like Protein 1 in Idiopathic Normal-Pressure Hydrocephalus , 2023, Journal of Alzheimer's disease : JAD.

[2]  D. Kaya,et al.  A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias , 2022, Clinical interventions in aging.

[3]  K. Blennow,et al.  Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease , 2022, Frontiers in Neurology.

[4]  P. Eide,et al.  Cerebrospinal fluid and venous biomarkers of shunt-responsive idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis , 2022, Acta Neurochirurgica.

[5]  K. Blennow,et al.  Higher levels of neurofilament light chain and total tau in CSF are associated with negative outcome after shunt surgery in patients with normal pressure hydrocephalus , 2022, Fluids and Barriers of the CNS.

[6]  K. Blennow,et al.  Cerebrospinal fluid biomarkers that reflect clinical symptoms in idiopathic normal pressure hydrocephalus patients , 2022, Fluids and barriers of the CNS.

[7]  S. Hasselbalch,et al.  Elevated CSF inflammatory markers in patients with idiopathic normal pressure hydrocephalus do not promote NKCC1 hyperactivity in rat choroid plexus , 2021, Fluids and Barriers of the CNS.

[8]  Kouichi Ozaki,et al.  JAMIR-eQTL: Japanese genome-wide identification of microRNA expression quantitative trait loci across dementia types , 2021, Database J. Biol. Databases Curation.

[9]  D. Mari,et al.  Novel Insight in Idiopathic Normal Pressure Hydrocephalus (iNPH) Biomarker Discovery in CSF , 2021, International journal of molecular sciences.

[10]  Qi Xu,et al.  Cerebrospinal Fluid Alzheimer’s Biomarkers and Neurofilament Light Profile of Idiopathic Normal Pressure Hydrocephalus in China: A PUMCH Cohort Study , 2021, Neurodegenerative Diseases.

[11]  K. Blennow,et al.  Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus , 2021, Fluids and barriers of the CNS.

[12]  K. Nozaki,et al.  Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia , 2021, Fluids and barriers of the CNS.

[13]  K. Blennow,et al.  Time Trends of Cerebrospinal Fluid Biomarkers of Neurodegeneration in Idiopathic Normal Pressure Hydrocephalus , 2021, Journal of Alzheimer's disease : JAD.

[14]  N. MacAulay,et al.  Inflammatory Markers in Cerebrospinal Fluid from Patients with Hydrocephalus: A Systematic Literature Review , 2021, Disease markers.

[15]  S. Aoki,et al.  Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus , 2021, Neurologia medico-chirurgica.

[16]  Jing Ding,et al.  Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus , 2020, CNS neuroscience & therapeutics.

[17]  B. Borroni,et al.  P-Tau as prognostic marker in long term follow up for patients with shunted iNPH , 2020, Neurological Research.

[18]  H. Sugano,et al.  Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus , 2020, European journal of neurology.

[19]  D. Kaya,et al.  The applause sign in elderly patients with idiopathic normal pressure hydrocephalus , 2020, Applied neuropsychology. Adult.

[20]  J. Simard,et al.  Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets , 2020, Nature Reviews Neurology.

[21]  H. Hansson,et al.  Blood-brain barrier leakage of blood proteins in idiopathic normal pressure hydrocephalus , 2019, Brain Research.

[22]  D. Kaya,et al.  The Outcomes Of Serial Cerebrospinal Fluid Removal In Elderly Patients With Idiopathic Normal Pressure Hydrocephalus , 2019, Clinical interventions in aging.

[23]  K. Blennow,et al.  CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics , 2019, Journal of Neurology, Neurosurgery, and Psychiatry.

[24]  L. Söderström,et al.  Prevalence of idiopathic normal pressure hydrocephalus: A prospective, population-based study , 2019, PloS one.

[25]  M. U. Nollert,et al.  Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator , 2019, Scientific Reports.

[26]  P. Calabresi,et al.  Neurofilament light chain as a biomarker in neurological disorders , 2019, Journal of Neurology, Neurosurgery, and Psychiatry.

[27]  R. Keep,et al.  Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats , 2019, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  H. Sugano,et al.  Preoperative Phosphorylated Tau Concentration in the Cerebrospinal Fluid Can Predict Cognitive Function Three Years after Shunt Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus , 2018, Journal of Alzheimer's disease : JAD.

[29]  H. Hansson,et al.  Astrogliosis and impaired aquaporin‐4 and dystrophin systems in idiopathic normal pressure hydrocephalus , 2018, Neuropathology and applied neurobiology.

[30]  A. Pisani,et al.  Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus , 2018, Journal of Neural Transmission.

[31]  E. Fersten,et al.  Levels of selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in patients with hydrocephalus. , 2017, Folia neuropathologica.

[32]  Ingmar Skoog,et al.  Mortality and risk of dementia in normal-pressure hydrocephalus: A population study , 2017, Alzheimer's & Dementia.

[33]  S. Niida,et al.  PTPRQ as a potential biomarker for idiopathic normal pressure hydrocephalus , 2017, Molecular medicine reports.

[34]  David V. Hansen,et al.  TREM2, Microglia, and Neurodegenerative Diseases. , 2017, Trends in molecular medicine.

[35]  N. Relkin,et al.  Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis , 2017, Fluids and Barriers of the CNS.

[36]  N. Hattori,et al.  Decreased Expression of hsa-miR-4274 in Cerebrospinal Fluid of Normal Pressure Hydrocephalus Mimics with Parkinsonian Syndromes , 2016, Journal of Alzheimer's disease : JAD.

[37]  P. Abreu-González,et al.  Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus , 2016, Clinical Neurology and Neurosurgery.

[38]  J. Malm,et al.  Diagnosis and Treatment of Idiopathic Normal Pressure Hydrocephalus , 2016, Continuum.

[39]  Hu Yimin,et al.  High fibrosis indices in cerebrospinal fluid of patients with shunt-dependent post-traumatic chronic hydrocephalus , 2016, Translational neuroscience.

[40]  J. Halperin,et al.  Practice guideline: Idiopathic normal pressure hydrocephalus: Response to shunting and predictors of response , 2015, Neurology.

[41]  H. Sugano,et al.  Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus , 2015, Journal of the Neurological Sciences.

[42]  Adila Elobeid,et al.  Correlations Between Mini-Mental State Examination Score, Cerebrospinal Fluid Biomarkers, and Pathology Observed in Brain Biopsies of Patients With Normal-Pressure Hydrocephalus , 2015, Journal of neuropathology and experimental neurology.

[43]  E. Hol,et al.  Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. , 2015, Current opinion in cell biology.

[44]  H. Hartung,et al.  Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b , 2014, Annals of clinical and translational neurology.

[45]  N. Graff-Radford Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus , 2014, Neurology.

[46]  H. Soininen,et al.  Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus , 2014, PloS one.

[47]  P. Bugalho,et al.  Profile of cognitive dysfunction and relation with gait disturbance in Normal Pressure Hydrocephalus , 2014, Clinical Neurology and Neurosurgery.

[48]  N. Kitchen,et al.  Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus , 2013, Acta Neurochirurgica.

[49]  K. Blennow,et al.  Idiopathic normal-pressure hydrocephalus , 2013, Neurology.

[50]  H. Soininen,et al.  CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings , 2012, Neurology.

[51]  K. Muraszko,et al.  Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage , 2012, Translational Stroke Research.

[52]  A. Forge,et al.  Hair Bundle Defects and Loss of Function in the Vestibular End Organs of Mice Lacking the Receptor-Like Inositol Lipid Phosphatase PTPRQ , 2012, The Journal of Neuroscience.

[53]  H. Soininen,et al.  Post‐mortem findings in 10 patients with presumed normal‐pressure hydrocephalus and review of the literature , 2012, Neuropathology and applied neurobiology.

[54]  L. Lemieux,et al.  Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus , 2011, Alzheimer's & Dementia.

[55]  Makoto Uchiyama,et al.  Cognitive Profile of Idiopathic Normal Pressure Hydrocephalus , 2011, Dementia and Geriatric Cognitive Disorders Extra.

[56]  N. Di Lorenzo,et al.  CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt: CSF biomarkers of response to surgical treatment , 2010, Neurological Sciences.

[57]  T. Walsh,et al.  Nonsense mutation of the stereociliar membrane protein gene PTPRQ in human hearing loss DFNB84 , 2010, Journal of Medical Genetics.

[58]  R. Petersen,et al.  Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects , 2009, Annals of neurology.

[59]  K. Unsicker,et al.  The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. , 2008, Journal of neurochemistry.

[60]  M. Miyajima,et al.  Expression of TGF-βs and TGF-β type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus , 2007, Neuroscience Letters.

[61]  S. Rehncrona,et al.  LONG‐TERM OUTCOME IN PATIENTS WITH SUSPECTED NORMAL PRESSURE HYDROCEPHALUS , 2007, Neurosurgery.

[62]  C. Sfagos,et al.  Cerebrospinal fluid tau, phospho‐tau181 and β‐amyloid1−42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer's disease , 2007, European journal of neurology.

[63]  M. Miyajima,et al.  Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics , 2006, Acta Neurochirurgica.

[64]  K. Jellinger,et al.  The role of alpha-synuclein and tau in neurodegenerative movement disorders. , 2005, Current opinion in neurology.

[65]  M. Tullberg,et al.  Normal pressure hydrocephalus triggers intrathecal production of TNF-α , 2003, Neurobiology of Aging.

[66]  M. Tullberg,et al.  CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus , 1998, Neurology.

[67]  S. Kar,et al.  Differentially expressed genes in TGF-β1 sensitive and resistant human hepatoma cells , 1995 .

[68]  L. Jacobsson,et al.  Quantitative SPECT cisternography in normal pressure hydrocephalus , 1994, Acta neurologica Scandinavica.

[69]  E. Bock,et al.  High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus , 1985, Journal of the Neurological Sciences.

[70]  S. Hasselbalch,et al.  Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus versus Alzheimer's Disease and Subcortical Ischemic Vascular Disease: A Systematic Review. , 2019, Journal of Alzheimer's disease : JAD.

[71]  M. Hill,et al.  The impact of selected cytokines in the follow-up of normal pressure hydrocephalus. , 2015, Physiological research.

[72]  S. Shimohama,et al.  Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer's disease. , 2015, Journal of Alzheimer's disease : JAD.

[73]  R. Hampl,et al.  Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. , 2014, Neuro endocrinology letters.