On the dimension of trivariate spline spaces with the highest order smoothness on 3D T-meshes

T-meshes are a type of rectangular partitions of planar domains which allow hanging vertices. Because of the special structure of T-meshes, adaptive local refinement is possible for splines defined on this type of meshes, which provides a solution for the defect of NURBS. In this paper, we generalize the definitions to the three-dimensional (3D) case and discuss a fundamental problem – the dimension of trivariate spline spaces on 3D T-meshes. We focus on a special case where splines are Cd−1 continuous for degree d. The smoothing cofactor method for trivariate splines is explored for this situation. We obtain a general dimension formula and present lower and upper bounds for the dimension. At last, we introduce a type of 3D T-meshes, where we can give an explicit dimension formula.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Bruce R. Piper,et al.  An explicit basis for C 1 quartic by various bivariate splines , 1987 .

[3]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[4]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[5]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[6]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[7]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[8]  Philipp Morgenstern,et al.  Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement , 2015, SIAM J. Numer. Anal..

[9]  Fang Deng,et al.  Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..

[10]  Peter Alfeld,et al.  Multivariate splines and the Bernstein-Bézier form of a polynomial , 2016, Comput. Aided Geom. Des..

[11]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[12]  Wai Wah Lau,et al.  A Lower Bound for the Dimension of Trivariate Spline Spaces , 2005 .

[13]  G. Strang Piecewise polynomials and the finite element method , 1973 .

[14]  Larry L. Schumaker,et al.  The generic dimension of the space of C 1 splines of degree d ≥8 on tetrahedral decompositions , 1993 .

[15]  Jiansong Deng,et al.  On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method , 2012, Comput. Aided Geom. Des..

[16]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[17]  Lujun Wang Trivariate polynomial splines on 3D T-meshes , 2012 .

[18]  Jiansong Deng,et al.  Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .

[19]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[20]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[21]  Meng Wu,et al.  Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..

[22]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[23]  Falai Chen,et al.  On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..

[24]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[25]  Dwight Diener,et al.  Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2 r and smoothness order r , 1990 .

[26]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[27]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[28]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[29]  Larry L. Schumaker,et al.  Bounds on the dimensions of trivariate spline spaces , 2008, Adv. Comput. Math..

[30]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[31]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[32]  N. Nguyen-Thanh,et al.  An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .

[33]  Annalisa Buffa,et al.  Characterization of T-splines with reduced continuity order on T-meshes , 2012 .

[34]  Fang Deng,et al.  Dimensions of spline spaces over non-rectangular T-meshes , 2016, Adv. Comput. Math..

[35]  Bernard Mourrain,et al.  On the problem of instability in the dimension of a spline space over a T-mesh , 2012, Comput. Graph..

[36]  Bernard Mourrain,et al.  Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach , 2014, Mathematics in Computer Science.

[37]  Hod Lipson,et al.  Fabricated: The New World of 3D Printing , 2013 .

[38]  L. Billera Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .

[39]  L. Schumaker On the Dimension of Spaces Of Piecewise Polynomials in Two Variables , 1979 .