On the dimension of trivariate spline spaces with the highest order smoothness on 3D T-meshes
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Bruce R. Piper,et al. An explicit basis for C 1 quartic by various bivariate splines , 1987 .
[3] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[4] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[5] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[6] J. M. Cascón,et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .
[7] I. J. Schoenberg. Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .
[8] Philipp Morgenstern,et al. Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement , 2015, SIAM J. Numer. Anal..
[9] Fang Deng,et al. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..
[10] Peter Alfeld,et al. Multivariate splines and the Bernstein-Bézier form of a polynomial , 2016, Comput. Aided Geom. Des..
[11] Jiansong Deng,et al. Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..
[12] Wai Wah Lau,et al. A Lower Bound for the Dimension of Trivariate Spline Spaces , 2005 .
[13] G. Strang. Piecewise polynomials and the finite element method , 1973 .
[14] Larry L. Schumaker,et al. The generic dimension of the space of C 1 splines of degree d ≥8 on tetrahedral decompositions , 1993 .
[15] Jiansong Deng,et al. On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method , 2012, Comput. Aided Geom. Des..
[16] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[17] Lujun Wang. Trivariate polynomial splines on 3D T-meshes , 2012 .
[18] Jiansong Deng,et al. Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .
[19] Ren-hong Wang. Multivariate Spline Functions and Their Applications , 2001 .
[20] Martti Mäntylä,et al. Introduction to Solid Modeling , 1988 .
[21] Meng Wu,et al. Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..
[22] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .
[23] Falai Chen,et al. On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..
[24] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[25] Dwight Diener,et al. Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2 r and smoothness order r , 1990 .
[26] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[27] Bernard Mourrain,et al. On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..
[28] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[29] Larry L. Schumaker,et al. Bounds on the dimensions of trivariate spline spaces , 2008, Adv. Comput. Math..
[30] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[31] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[32] N. Nguyen-Thanh,et al. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .
[33] Annalisa Buffa,et al. Characterization of T-splines with reduced continuity order on T-meshes , 2012 .
[34] Fang Deng,et al. Dimensions of spline spaces over non-rectangular T-meshes , 2016, Adv. Comput. Math..
[35] Bernard Mourrain,et al. On the problem of instability in the dimension of a spline space over a T-mesh , 2012, Comput. Graph..
[36] Bernard Mourrain,et al. Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach , 2014, Mathematics in Computer Science.
[37] Hod Lipson,et al. Fabricated: The New World of 3D Printing , 2013 .
[38] L. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .
[39] L. Schumaker. On the Dimension of Spaces Of Piecewise Polynomials in Two Variables , 1979 .