RIBOSOMAL 5S RNA: TERTIARY STRUCTURE AND INTERACTIONS WITH PROTEINS

. . . . . . . . . (6) Interaction with other ribosomal RNAs . . . . . . (7) Other activities . . . . . . . . . . 111. The structure of 5s rRNA in solution . . . . . . . ( I ) Y-shaped model . . . . . . . . . . (2) Model for E. coli 5s rRNA ( 3 ) Model for yeast 5s rRNA (lollipop) . . . . . . . . . . . . . . IV. The elongated shape model of plant 5s rRNA V. Interaction of 5s rRNA with proteins . . . . . . . . . . . . ( I ) Ribosomal proteins . . . . . . . . . . (2) TF IIIA . . . . . . . . . . . . VI. Crystallization . . . . . . . . . . . VII. Summary and perspectives . . . . . . . . . VIII . Acknowledgements . . . . . . . . . . IX. References . . . . . . . . . . . . . . . I . . . I

[1]  V. Erdmann,et al.  RNA structural dynamics: pre-melting and melting transitions in E. coli 5S rRNA. , 1985, Journal of biomolecular structure & dynamics.

[2]  N. Kenmochi,et al.  Role of 5SrRNA as a positive effector of some aminoacyl-tRNA synthetases in macromolecular complexes, with specific reference to methionyl-tRNA synthetase. , 1991, Journal of biochemistry.

[3]  R. Garrett,et al.  Comparison of eubacterial and eukaryotic 5S RNA structures: a chemical modification study. , 1985, Biochemistry.

[4]  V. Erdmann,et al.  Different conformational forms of Escherichia coli and rat liver 5S rRNA revealed by Pb(II)-induced hydrolysis. , 1992, European journal of biochemistry.

[5]  A. Ellington Out of shape but fir for recognition , 1993, Current Biology.

[6]  E Westhof,et al.  Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. , 1989, Journal of molecular biology.

[7]  Rupert De Wachter,et al.  Collection of published 5S and 5.8S ribosomal RNA sequences , 1983, Nucleic Acids Res..

[8]  I. Tinoco,et al.  Structural Elements in RNA , 1991, Progress in Nucleic Acid Research and Molecular Biology.

[9]  V. Erdmann,et al.  Collection of published 5S and 5.8S ribosomal RNA sequences. , 1983, Nucleic acids research.

[10]  J. Barciszewski,et al.  Structural analysis of plant ribosomal 5S RNAs. Visualisation of novel tertiary interactions by cleavage of lupin and wheat 5SrRNAs with ribonuclease H. , 1990, Biochimica et biophysica acta.

[11]  N. Pace,et al.  The conserved 5 S rRNA complement to tRNA is not required for translation of natural mRNA. , 1984, Journal of Biological Chemistry.

[12]  J. Barciszewski,et al.  The primary structure of maize and tobacco 5 S rRNA , 1985 .

[13]  M. Nilges,et al.  NMR analysis of helix I from the 5S RNA of Escherichia coli. , 1992, Biochemistry.

[14]  J. Barciszewski,et al.  Compilation of plant 5S ribosomal RNA sequences on RNA and DNA levels , 1994 .

[15]  D. Moras,et al.  High resolution structure of the RNA duplex [U(U-A)6A]2 , 1988, Nature.

[16]  D. Moras,et al.  Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase , 1993, Nature.

[17]  J. Puglisi,et al.  Role of RNA structure in arginine recognition of TAR RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  V. Erdmann,et al.  Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA--ribosomal-protein complexes by means of Pb(II)-induced hydrolysis. , 1992, European journal of biochemistry.

[19]  J. Kowalak,et al.  5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  J. Steitz,et al.  A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells , 1988, The Journal of cell biology.

[21]  E. Westhof,et al.  Higher order structure of chloroplastic 5S ribosomal RNA from spinach. , 1988, Biochemistry.

[22]  V. Erdmann,et al.  Comparative structural analysis of cytoplasmic and chloroplastic 5S rRNA from spinach. , 1983, Nucleic Acids Research.

[23]  C. Ehresmann,et al.  A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis. , 1988, Nucleic acids research.

[24]  H. Noller,et al.  A "bulged" double helix in a RNA-protein contact site. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A study of the conformation of 5S RNA by 31P NMR. , 1989, Nucleic acids research.

[26]  P. Moore,et al.  Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. , 1992, Biochemistry.

[27]  M. Wegnez,et al.  Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Nazar,et al.  The 5S RNA - protein complex from yeast: a model for the evolution and structure of the eukaryotic ribosome. , 1982, Canadian journal of biochemistry.

[29]  J. Ebel,et al.  Probing the structure of RNAs in solution. , 1987, Nucleic acids research.

[30]  M. Wegnez,et al.  Biochemical Research on oogenesis. Composition of the 42-S storage particles of Xenopus laevix oocytes. , 1980, European journal of biochemistry.

[31]  S. H. Kim,et al.  The characterization of the TFIIIA synthesized in somatic cells of Xenopus laevis. , 1990, Genes & development.

[32]  C. Wu,et al.  Zinc release from Xenopus transcription factor IIIA induced by chemical modifications. , 1989, Biochemistry.

[33]  I. Willis RNA polymerase III. Genes, factors and transcriptional specificity. , 1993, European journal of biochemistry.

[35]  F. Sunderman,et al.  The interactions of zinc, nickel, and cadmium with Xenopus transcription factor IIIA, assessed by equilibrium dialysis. , 1992, Journal of inorganic biochemistry.

[36]  R. Garrett,et al.  How Do Protein L18 and 5S RNA Interact , 1986 .

[37]  C. Betzel,et al.  Crystallization and preliminary diffraction studies of 5 S rRNA from the thermophilic bacterium Thermus flavus. , 1991, Journal of molecular biology.

[38]  D. Bazett-Jones Phosphorus imaging of the 7-S ribonucleoprotein particle. , 1988, Journal of ultrastructure and molecular structure research.

[39]  J. Barciszewski,et al.  Unfolding of the tertiary structure of specific tRNA and ribosomal 5S RNA from plants as studied with hydroxyl radicals. , 1992, International journal of biological macromolecules.

[40]  S. Osawa,et al.  Evolution of green plants as deduced from 5S rRNA sequences. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Lee,et al.  Assembly of Xenopus transcription factor III A-5S RNA complex. , 1990, Biochemistry.

[42]  V. Erdmann,et al.  A Comparative Analysis of Structural Dynamics in 5S rRNA , 1986 .

[43]  R. Wagner,et al.  5S RNA structure and function. , 1988, Methods in enzymology.

[44]  C. Verrijzer,et al.  Bending of DNA by transcription factors , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  T. Pieler,et al.  RNA and DNA binding zinc fingers in Xenopus TFIIIA , 1992, Cell.

[46]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[47]  Jürgen J. Müller,et al.  Comparison of the structures of the native form of rat liver 5S rRNA and yeast tRNAphe: small-angle and wide-angle X-ray scattering study , 1982 .

[48]  M. Speek,et al.  Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25. , 1982, Nucleic acids research.

[49]  T. Steitz,et al.  Crystallization of a ribonuclease-resistant fragment of Escherichia coli 5 S ribosomal RNA and its complex with protein L25. , 1983, Journal of molecular biology.

[50]  V. Erdmann,et al.  Three-dimensional structural model of eubacterial 5S RNA that has functional implications. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K. Terao,et al.  Metabolic characteristics of rat liver cytosolic 5SRNA. , 1993, European journal of biochemistry.

[52]  R. Villems,et al.  Two distinct conformations of rat liver ribosomal 5S RNA. , 1982, Nucleic acids research.

[53]  K. Rippe,et al.  Substrate properties of 25-nt parallel-stranded linear DNA duplexes. , 1989, Biochemistry.

[54]  J. McDougall,et al.  Evolutionary changes in the higher order structure of the ribosomal 5S RNA , 1987, Nucleic Acids Res..

[55]  D. Bogenhagen,et al.  Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns. , 1991, Nucleic acids research.

[56]  V. Erdmann,et al.  Structural analysis of 5S rRNA, 5S rRNA-protein complexes and ribosomes employing RNase H and d(GTTCGG). , 1987, European journal of biochemistry.

[57]  J. Hayes,et al.  The missing nucleoside experiment: a new technique to study recognition of DNA by protein. , 1989, Biochemistry.

[58]  T. Cech,et al.  Defining the inside and outside of a catalytic RNA molecule. , 1989, Science.

[59]  S. Tanaka,et al.  Occurrence of 5SrRNA in high molecular weight complexes of aminoacyl-tRNA synthetases in a rat liver supernatant. , 1991, Journal of biochemistry.

[60]  J. Steitz,et al.  Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. , 1989, The EMBO journal.

[61]  J. Puglisi,et al.  Additive, cooperative and anti‐cooperative effects between identity nucleotides of a tRNA. , 1993, The EMBO journal.

[62]  B. Shastry Xenopus transcription factor IIIA (XTFIIIA): after a decade of research. , 1991, Progress in biophysics and molecular biology.

[63]  K. Morikawa,et al.  Crystallization and preliminary X‐ray diffraction study of 5 S rRNA from Thermus thermophilus HB8 , 1982, FEBS Letters.

[64]  T. Pieler,et al.  Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes , 1990, Cell.

[65]  D. Lilley,et al.  Kinking of RNA helices by bulged bases, and the structure of the human immunodeficiency virus transactivator response element. , 1992, Journal of molecular biology.

[66]  A small angle x-ray scattering study of a fragment derived from E. coli 5S RNA. , 1984, Nucleic acids research.

[67]  T. Pieler,et al.  TFIIIA: nine fingers--three hands? , 1993, Trends in biochemical sciences.

[68]  P. Wright,et al.  Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene. , 1992, Journal of molecular biology.

[69]  G. Varani,et al.  The conformation of loop E of eukaryotic 5S ribosomal RNA. , 1993, Biochemistry.

[70]  R. Wagner,et al.  Does 5S RNA from E. coli have a pseudoknotted structure? , 1986, Nucleic acids research.

[71]  D. Bogenhagen,et al.  The carboxyterminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle. , 1991, Nucleic acids research.

[72]  A. Frankel Peptide models of the tat—Tar protein‐RNA interaction , 1992, Protein science : a publication of the Protein Society.

[73]  P. Schimmel,et al.  Intron locations and functional deletions in relation to the design and evolution of a subgroup of class I tRNA synthetases , 1992, Protein science : a publication of the Protein Society.

[74]  P. Wright,et al.  Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein. , 1993, Science.

[75]  D. Bogenhagen,et al.  Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site. , 1992, Nucleic acids research.

[76]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  E. Westhof,et al.  Ribosomal 5S RNA from Xenopus laevis oocytes: conformation and interaction with transcription factor IIIA. , 1990, Biochimie.

[78]  C. Lehner,et al.  Major nucleolar proteins shuttle between nucleus and cytoplasm , 1989, Cell.

[79]  I. Wool,et al.  Use of the cytotoxic nuclease alpha-sarcin to identify the binding site on eukaryotic 5 S ribosomal ribonucleic acid for the ribosomal protein L5. , 1986, The Journal of biological chemistry.

[80]  L. Nilsson,et al.  The ribosomal binding site for eukaryotic elongation factor EF-2 contains 5 S ribosomal RNA. , 1987, Biochimica et biophysica acta.

[81]  J. Goddard Transfer RNA , 1980, Nature.

[82]  Derek Hudson,et al.  RNA recognition by an isolated α helix , 1993, Cell.

[83]  H. Noller,et al.  Structure and role of 5S RNA-protein complexes in protein biosynthesis , 1981 .

[84]  I. Mattaj RNA recognition: A family matter? , 1993, Cell.

[85]  E. Westhof,et al.  Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. , 1991, Journal of molecular biology.

[86]  A. Marshall,et al.  Structural investigation of helices II, III, and IV of B. megaterium 5S ribosomal RNA by molecular dynamics calculations , 1992, Biopolymers.

[87]  I. Wool,et al.  Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[88]  H. Fabian,et al.  Structural analysis of the A and B conformers of escherichia coli 5 S ribosomal RNA by infrared spectroscopy , 1981, FEBS letters.

[89]  P. Moore,et al.  Tetramerization of an RNA oligonucleotide containing a GGGG sequence , 1991, Nature.

[90]  J. Barciszewski,et al.  New model of tertiary structure of plant 5S rRNA is confirmed by digestions with α‐sarcin , 1990 .

[91]  R. Nazar Higher order structure of the ribosomal 5 S RNA. , 1991, The Journal of biological chemistry.

[92]  T L South,et al.  Zinc fingers. , 1990, Advances in inorganic biochemistry.

[93]  V. Erdmann,et al.  Compilation of 5S rRNA and 5S rRNA gene sequences. , 1990, Nucleic Acids Research.

[94]  T. El-Baradi,et al.  Zinc finger proteins: what we know and what we would like to know , 1991, Mechanisms of Development.

[95]  C. Merryman,et al.  Structure and function of ribosomal RNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[96]  S. Cusack,et al.  Crystallization of the seryl‐tRNA synthetase: tRNAser complex of Escherichia coli , 1993, FEBS letters.

[97]  M. Barciszewska Interaction of higher plant ribosomal 5S RNAs with Xenopus laevis transcriptional factor IIIA. , 1994, Acta biochimica Polonica.

[98]  A Klug,et al.  Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. , 1985, The EMBO journal.

[99]  I. Tinoco,et al.  Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs , 1991, Nature.

[100]  Maciej Szymanski,et al.  Compilation of 5S rRNA and 5S rRNA gene sequences , 1997, Nucleic Acids Res..

[101]  P. Moore Recent RNA structures , 1993 .

[102]  Donald D. Brown,et al.  A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus , 1990, Cell.

[103]  R. T. Walker,et al.  In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus. , 1988, Nucleic acids research.

[104]  P. Huber,et al.  The use of chemical nucleases to analyze RNA-protein interactions. The TFIIIA-5 S rRNA complex. , 1991, The Journal of biological chemistry.

[105]  E. Westhof,et al.  Involvement of "hinge" nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. , 1991, Journal of molecular biology.

[106]  R A Garrett,et al.  Protein L18 binds primarily at the junctions of helix II and internal loops A and B in Escherichia coli 5 S RNA. Implications for 5 S RNA structure. , 1989, Journal of molecular biology.

[107]  M. K. Darby,et al.  Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene , 1992, Molecular and cellular biology.

[108]  N. Pace,et al.  The catalytic element of a ribosomal RNA-processing complex. , 1984, The Journal of biological chemistry.

[109]  E. Westhof,et al.  Effect of mutations in domain 2 on the structural organization of oocyte 5 S rRNA from Xenopus laevis. , 1990, Journal of molecular biology.

[110]  E. Maxwell,et al.  Evidence for a Competitive‐Displacement Model for the initiation of protein synthesis involving the intermolecular hybridization of 5 S rRNA, 18 S rRNA and mRNA , 1991, FEBS letters.

[111]  G. Fox,et al.  Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Jiejun Wu,et al.  Investigation of Ribosomal 5S Ribonucleic Acid Solution Structure and Dynamics by Means of High-Resolution Nuclear Magnetic Resonance Spectroscopy , 1990 .

[113]  J. Barciszewski,et al.  Higher plant 5S rRNAs share common secondary and tertiary structure. A new three domains model. , 1990, International journal of biological macromolecules.

[114]  J. Steitz,et al.  The RNA binding protein La influences both the accuracy and the efficiency of RNA polymerase III transcription in vitro. , 1989, The EMBO journal.