Real-Time Hand Grasp Recognition Using Weakly Supervised Two-Stage Convolutional Neural Networks for Understanding Manipulation Actions

Understanding human hand usage is one of the richest information source to recognize human manipulation actions. Since humans use various tools during actions, grasp recognition gives important cues to figure out humans' intention and tasks. Earlier studies analyzed grasps with positions of hand joints by attaching sensors, but since these types of sensors prevent humans from naturally conducting actions, visual approaches have been focused in recent years. Convolutional neural networks require a vast annotated dataset, but, to our knowledge, no human grasping dataset includes ground truth of hand regions. In this paper, we propose a grasp recognition method only with image-level labels by the weakly supervised learning framework. In addition, we split the grasp recognition process into two stages that are hand localization and grasp classification so as to speed up. Experimental results demonstrate that the proposed method outperforms existing methods and can perform in real-time.

[1]  Danica Kragic,et al.  The GRASP Taxonomy of Human Grasp Types , 2016, IEEE Transactions on Human-Machine Systems.

[2]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[3]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[4]  Yoichi Sato,et al.  A scalable approach for understanding the visual structures of hand grasps , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Darius Burschka,et al.  Effectiveness of Grasp Attributes and Motion-Constraints for Fine-Grained Recognition of Object Manipulation Actions , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[6]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Ivan Laptev,et al.  Is object localization for free? - Weakly-supervised learning with convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.