A real time forecasting tool for dynamic travel time from clustered time series

This paper addresses the problem of dynamic travel time (DT T) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DT T are provided. DT T is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.

[1]  D. Pham,et al.  An Incremental K-means algorithm , 2004 .

[2]  Mecit Cetin,et al.  Short-term traffic flow rate forecasting based on identifying similar traffic patterns , 2016 .

[3]  Pravin Varaiya,et al.  In-pavement wireless sensor network for vehicle classification , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[4]  Yang Zhang,et al.  Hourly Traffic Forecasts Using Interacting Multiple Model (IMM) Predictor , 2011, IEEE Signal Processing Letters.

[5]  Roland Chrobok,et al.  Different methods of traffic forecast based on real data , 2004, Eur. J. Oper. Res..

[6]  Markos Papageorgiou,et al.  Traffic Simulation with METANET , 2010 .

[7]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[8]  Mohammed Elhenawy,et al.  Dynamic travel time prediction using data clustering and genetic programming , 2014 .

[9]  Abbas Fotouhi,et al.  Traffic condition recognition using the k-means clustering method , 2011 .

[10]  Nikolaos Geroliminis,et al.  Experienced travel time prediction for congested freeways , 2013 .

[11]  Roberto Horowitz,et al.  Multiple-clustering ARMAX-based predictor and its application to freeway traffic flow prediction , 2014, 2014 American Control Conference.

[12]  Ardalan Vahidi,et al.  Prediction on Travel-Time Distribution for Freeways Using Online Expectation Maximization Algorithm , 2014 .

[13]  Carlos Canudas de Wit,et al.  Travel time forecasting from clustered time series via optimal fusion strategy , 2016, 2016 European Control Conference (ECC).

[14]  Fabio Morbidi,et al.  Grenoble Traffic Lab: An Experimental Platform for Advanced Traffic Monitoring and Forecasting [Applications of Control] , 2015, IEEE Control Systems.

[15]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[16]  D. Pham,et al.  Selection of K in K-means clustering , 2005 .

[17]  Carlos Canudas de Wit,et al.  Adaptive Kalman filtering for multi-step ahead traffic flow prediction , 2013, 2013 American Control Conference.

[18]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[19]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[20]  Yang Zhang,et al.  Analysis of Peak and Non-peak Traffic Forecasts Using Combined Models , 2011 .

[21]  Carlos Canudas de Wit,et al.  Online dynamic travel time prediction using speed and flow measurements , 2013, 2013 European Control Conference (ECC).

[22]  Carlos Canudas de Wit,et al.  Speed, counts, occupancy dataset (Grenoble Traffic Lab) , 2016 .

[23]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[24]  Yunpeng Wang,et al.  A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting , 2016 .

[25]  Eleni I. Vlahogianni,et al.  Short-term traffic forecasting: Where we are and where we’re going , 2014 .

[26]  Eleni I. Vlahogianni,et al.  Short‐term traffic forecasting: Overview of objectives and methods , 2004 .

[27]  Lili Du,et al.  An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks , 2012 .

[28]  Maria-Florina Balcan,et al.  Robust hierarchical clustering , 2013, J. Mach. Learn. Res..

[29]  Yingjie Tian,et al.  A Comprehensive Survey of Clustering Algorithms , 2015, Annals of Data Science.

[30]  Shu-Li Sun Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor , 2004, Autom..

[31]  Azadeh Khaleghi,et al.  Consistent Algorithms for Clustering Time Series , 2016, J. Mach. Learn. Res..

[32]  Costas S. Iliopoulos,et al.  Popping Superbubbles and Discovering Clumps: Recent Developments in Biological Sequence Analysis , 2016, WALCOM.

[33]  W. Weijermars,et al.  Analyzing highway flow patterns using cluster analysis , 2005, Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005..

[34]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[35]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .