A Benchmark for Temporal Color Constancy

Temporal Color Constancy (CC) is a recently proposed approach that challenges the conventional single-frame color constancy. The conventional approach is to use a single frame - shot frame - to estimate the scene illumination color. In temporal CC, multiple frames from the view finder sequence are used to estimate the color. However, there are no realistic large scale temporal color constancy datasets for method evaluation. In this work, a new temporal CC benchmark is introduced. The benchmark comprises of (1) 600 real-world sequences recorded with a high-resolution mobile phone camera, (2) a fixed train-test split which ensures consistent evaluation, and (3) a baseline method which achieves high accuracy in the new benchmark and the dataset used in previous works. Results for more than 20 well-known color constancy methods including the recent state-of-the-arts are reported in our experiments.

[1]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[2]  Ning Wang,et al.  Video-Based Illumination Estimation , 2011, CCIW.

[3]  Cordelia Schmid,et al.  Using High-Level Visual Information for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Theo Gevers,et al.  Color Constancy Using Natural Image Statistics and Scene Semantics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Sven Loncaric,et al.  Color Cat: Remembering Colors for Illumination Estimation , 2015, IEEE Signal Processing Letters.

[6]  Brian V. Funt,et al.  Estimating Illumination Chromaticity via Support Vector Regression , 2004, Color Imaging Conference.

[7]  K. Ikeuchi,et al.  Color constancy through inverse-intensity chromaticity space. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Kai-Fu Yang,et al.  Efficient illuminant estimation for color constancy using grey pixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Ayan Chakrabarti,et al.  Color Constancy by Learning to Predict Chromaticity from Luminance , 2015, NIPS.

[10]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[11]  Jonathan T. Barron,et al.  Convolutional Color Constancy , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Michael S. Brown,et al.  Effective learning-based illuminant estimation using simple features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[14]  Mark S. Drew,et al.  Exemplar-Based Color Constancy and Multiple Illumination , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Graham D. Finlayson,et al.  Corrected-Moment Illuminant Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[16]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.

[17]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[18]  Dani Lischinski,et al.  Illuminant Chromaticity from Image Sequences , 2013, 2013 IEEE International Conference on Computer Vision.

[19]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[21]  Jiri Matas,et al.  Flash Lightens Gray Pixe , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[22]  Yongjie Li,et al.  Efficient Color Constancy with Local Surface Reflectance Statistics , 2014, ECCV.

[23]  Stephen Lin,et al.  FC^4: Fully Convolutional Color Constancy with Confidence-Weighted Pooling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[25]  Jiri Matas,et al.  On Finding Gray Pixels , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Yun-Ta Tsai,et al.  Fast Fourier Color Constancy , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Zhaoxiang Zhang,et al.  Cascading Convolutional Color Constancy , 2019, AAAI.

[28]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[29]  Jiri Matas,et al.  Flash Lightens Gray Pixels , 2019 .

[30]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Ruigang Yang,et al.  A Uniform Framework for Estimating Illumination Chromaticity, Correspondence, and Specular Reflection , 2011, IEEE Transactions on Image Processing.

[32]  Jong-Ok Kim,et al.  Dichromatic Model Based Temporal Color Constancy for AC Light Sources , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Jiri Matas,et al.  Recurrent Color Constancy , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.