Compact energetic crystals@ urea-formaldehyde resin micro-composites with evident insensitivity

[1]  Junpeng Ma,et al.  The preparation and functional applications of carbon nanomaterial/conjugated polymer composites , 2019, Composites Communications.

[2]  Jingyu Wang,et al.  Effective Insensitiveness of Melamine Urea-Formaldehyde Resin via Interfacial Polymerization on Nitramine Explosives , 2018, Nanoscale Research Letters.

[3]  Jiaoqiang Zhang,et al.  Study on the dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) , 2018, Journal of Thermal Analysis and Calorimetry.

[4]  Feiyan Gong,et al.  Tuning the Reactivity of Metastable Intermixed Composite n-Al/PTFE by Polydopamine Interfacial Control. , 2018, ACS applied materials & interfaces.

[5]  Xiu-li Wang,et al.  Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane , 2018, Composites Communications.

[6]  Jian-Di Lin,et al.  A highly linear humidity sensor based on quartz crystal microbalance coated with urea formaldehyde resin/nano silica composite films , 2017 .

[7]  Zhijian Yang,et al.  Bioinspired interfacial reinforcement of polymer-based energetic composites with a high loading of solid explosive crystals , 2017 .

[8]  Qixin Zhou,et al.  Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development , 2017 .

[9]  L. Ding,et al.  Mussel-inspired coating of energetic crystals: A compact core–shell structure with highly enhanced thermal stability , 2017 .

[10]  V. Causin,et al.  Insights into the development of crystallinity in liquid urea-formaldehyde resins , 2017 .

[11]  Yong Jiang,et al.  A facile and cheap coating method to prepare SiO 2 /melamine-formaldehyde and SiO 2 /urea-formaldehyde composite microspheres , 2016 .

[12]  Zhijian Yang,et al.  Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets , 2016 .

[13]  V. Causin,et al.  Micro-Morphological Features of Cured Urea-Formaldehyde Adhesives Detected by Transmission Electron Microscopy , 2016 .

[14]  F. Huang,et al.  Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity , 2015 .

[15]  V. Causin,et al.  Morphological, chemical and crystalline features of urea–formaldehyde resin cured in contact with wood , 2014 .

[16]  Philip F. Pagoria,et al.  High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX , 2012 .

[17]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[18]  U. Teipel,et al.  Crystallization of Insensitive HMX , 2008 .

[19]  P. Liu,et al.  Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization , 2007 .

[20]  H. Östmark,et al.  Fourier Transform Raman Spectroscopy of the Four Crystallographic Phases of α, β, γ and ε 2,4,6,8,10,12‐Hexanitro‐2,4,6,8,10,12‐hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL‐20) , 2004 .

[21]  M. Dunky,et al.  Urea–formaldehyde (UF) adhesive resins for wood , 1998 .