A yield function for anisotropic materials Application to aluminum alloys

A phenomenological yield function is proposed to represent the plastic anisotropy of aluminum sheets. It is an extension of the functions given by Barlat et al. [Int. J. Plasticity 7 (1991) 693] and Karafillis and Boyce [J. Mech. Phys. Solids 41 (1993) 1859]. The anisotropy is represented by 12 parameters in the form of two fourth order symmetric tensors. Four other parameters influence the shape of the yield surface uniformly. The role of each parameter is described in detail. The convexity of the yield surface is proved. The implementation of the proposed yield function is done in the 3D general case in an object-oriented finite element code. It is used to represent the anisotropy of a 2024 aluminum thin sheet and the adjustment is excellent. Other anisotropic materials from the literature are also well described by the proposed yield function.

[1]  Dong-Yol Yang,et al.  Earing predictions based on asymmetric nonquadratic yield function , 2000 .

[2]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .

[3]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[4]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[5]  P. Germain Mécanique des milieux continus , 1962 .

[6]  R. Hill,et al.  CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .

[7]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[8]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[9]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[10]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[11]  R. Hill The mathematical theory of plasticity , 1950 .

[12]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[13]  William F. Hosford,et al.  On the Crystallographic Basis of Yield Criteria , 1996 .

[14]  R. E. Dick,et al.  Plane stress yield functions for aluminum alloy sheets , 2002 .

[15]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[16]  Han-Chin Wu,et al.  Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic hardening , 2002 .

[17]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[18]  Jacques Besson,et al.  Polymorphic constitutive equations in finite element codes , 1997 .

[19]  M. Langseth,et al.  An evaluation of yield criteria and flow rules for aluminium alloys , 1999 .

[20]  Kenneth W. Neale,et al.  Evaluation of anisotropic yield functions for aluminum sheets , 2003 .

[21]  S. M. Vorkoetter,et al.  Maple 7 Programming Guide , 2001 .

[22]  F. Barlat,et al.  Yielding description for solution strengthened aluminum alloys , 1997 .

[23]  Jian Cao,et al.  Prediction of forming limit curves using an anisotropic yield function with prestrain induced backstress , 2002 .

[24]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[25]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Philippe Achon Comportement et ténacité d'alliages d'aluminium à haute résistance , 1994 .

[27]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[28]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .