Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP

[1]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[2]  Mihaela Zavolan,et al.  Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. , 2009, Genome research.

[3]  T. Tuschl,et al.  Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes , 2009, Nature.

[4]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[5]  David Tollervey,et al.  Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs , 2009, Proceedings of the National Academy of Sciences.

[6]  K. Martin,et al.  mRNA Localization: Gene Expression in the Spatial Dimension , 2009, Cell.

[7]  Melissa J. Moore,et al.  Pre-mRNA Processing Reaches Back toTranscription and Ahead to Translation , 2009, Cell.

[8]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[9]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[10]  Gene W. Yeo,et al.  An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells , 2009, Nature Structural &Molecular Biology.

[11]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[12]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[13]  Matthew Mort,et al.  Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. , 2009, Genome research.

[14]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[15]  M. Zavolan,et al.  Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. , 2008, RNA.

[16]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[17]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[18]  Z. Mourelatos,et al.  Site-specific crosslinking of human microRNPs to RNA targets. , 2008, RNA.

[19]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[20]  Mihaela Zavolan,et al.  Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System , 2008, PloS one.

[21]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[22]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[23]  L. Regan,et al.  Structure and function of KH domains , 2008, The FEBS journal.

[24]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[25]  C. Burge,et al.  Identification of let-7-regulated oncofetal genes. , 2008, Cancer research.

[26]  S. Richard,et al.  New implications for the QUAKING RNA binding protein in human disease , 2008, Journal of neuroscience research.

[27]  Thomas Tuschl,et al.  Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. , 2008, Methods.

[28]  Mihaela Zavolan,et al.  Computational analysis of small RNA cloning data. , 2008, Methods.

[29]  Erik van Nimwegen,et al.  Finding regulatory elements and regulatory motifs: a general probabilistic framework , 2007, BMC Bioinformatics.

[30]  U. Dafni,et al.  Expression of oncofetal RNA‐binding protein CRD‐BP/IMP1 predicts clinical outcome in colon cancer , 2007, International journal of cancer.

[31]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[32]  Mihaela Zavolan,et al.  Reproductive toxicology. Trichloroethylene. , 1997, BMC Bioinformatics.

[33]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[34]  S. Guil,et al.  The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a , 2007, Nature Structural &Molecular Biology.

[35]  J. Keene RNA regulons: coordination of post-transcriptional events , 2007, Nature Reviews Genetics.

[36]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[37]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[38]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[39]  Gabriele Varani,et al.  RNA is rarely at a loss for companions; as soon as RNA , 2008 .

[40]  T. Beaty Faculty Opinions recommendation of Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. , 2007 .

[41]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[42]  B. Blencowe,et al.  An RNA map predicting Nova-dependent splicing regulation , 2006, Nature.

[43]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[44]  Daniel Herschlag,et al.  Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[46]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[47]  Erik van Nimwegen,et al.  PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny , 2005, PLoS Comput. Biol..

[48]  S. Richard,et al.  Target RNA motif and target mRNAs of the Quaking STAR protein , 2005, Nature Structural &Molecular Biology.

[49]  P. Silver,et al.  A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain , 2005, BMC Developmental Biology.

[50]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[51]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[52]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[53]  J. Yisraeli VICKZ proteins: a multi‐talented family of regulatory RNA‐binding proteins , 2005, Biology of the cell.

[54]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[55]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[56]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[57]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Gorospe,et al.  Identification of a target RNA motif for RNA-binding protein HuR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[60]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[61]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[62]  Phillip D. Zamore,et al.  Modular Recognition of RNA by a Human Pumilio-Homology Domain , 2002, Cell.

[63]  Marvin Wickens,et al.  A PUF family portrait: 3'UTR regulation as a way of life. , 2002, Trends in genetics : TIG.

[64]  R. Kuimelis,et al.  Base Composition Analysis of Nucleosides Using HPLC , 2000, Current protocols in nucleic acid chemistry.

[65]  S. Tenenbaum,et al.  Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  T. Koch,et al.  Photocross-linking of nucleic acids to associated proteins. , 1997, Critical reviews in biochemistry and molecular biology.

[67]  AC Tose Cell , 1993, Cell.

[68]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[69]  A. Favre,et al.  4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. , 1986, Biochemical and biophysical research communications.

[70]  G. Dreyfuss,et al.  Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies , 1984, Molecular and cellular biology.

[71]  T. Pederson,et al.  Structure of nuclear ribonucleoprotein: identification of proteins in contact with poly(A)+ heterogeneous nuclear RNA in living HeLa cells , 1981, The Journal of cell biology.

[72]  A. Wagenmakers,et al.  Cross-linking of mRNA to proteins by irradiation of intact cells with ultraviolet light. , 1980, European journal of biochemistry.

[73]  J R Greenberg,et al.  Ultraviolet light-induced crosslinking of mRNA to proteins. , 1979, Nucleic acids research.