Set Identification in Models with Multiple Equilibria

We propose a computationally feasible way of deriving the identified features of models with multiple equilibria in pure or mixed strategies. It is shown that in the case of Shapley regular normal form games, the identified set is characterized by the inclusion of the true data distribution within the core of a Choquet capacity, which is interpreted as the generalized likelihood of the model. In turn, this inclusion is characterized by a finite set of inequalities and efficient and easily implementable combinatorial methods are described to check them. In all normal form games, the identified set is characterized in terms of the value of a submodular or convex optimization program. Efficient algorithms are then given and compared to check inclusion of a parameter in this identified set. The latter are illustrated with family bargaining games and oligopoly entry games. Copyright 2011, Oxford University Press.

[1]  Steven T. Berry Estimation of a Model of Entry in the Airline Industry , 1992 .

[2]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[3]  Elie Tamer,et al.  Advances in Economics and Econometrics: Identification in Models of Oligopoly Entry , 2006 .

[4]  Edward E. Leamer,et al.  Econometric Tools for Analyzing Market Outcomes , 2007 .

[5]  Quang Vuong,et al.  Simultaneous Equations Models for Dummy Endogenous Variables: A Game Theoretic Formulation with an Application to Labor Force Participation , 1984 .

[6]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[7]  D. Schmeidler Integral representation without additivity , 1986 .

[8]  G. Choquet Theory of capacities , 1954 .

[9]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[10]  T. Koopmans,et al.  The Identification of Structural Characteristics , 1950 .

[11]  C. Villani Topics in Optimal Transportation , 2003 .

[12]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[13]  Federico Echenique,et al.  Mixed equilibria in games of strategic complementarities , 2003 .

[14]  Dilation Bootstrap A methodology for constructing confidence regions with partially identified models , 2006 .

[15]  Matthew Shum,et al.  Aggregate matchings , 2010, BQGT.

[16]  C. Manski,et al.  Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .

[17]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[18]  Jeremy T. Fox,et al.  Identification of Potential Games and Demand Models for Bundles , 2012 .

[19]  J. Heckman Dummy Endogenous Variables in a Simultaneous Equation System , 1977 .

[20]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[21]  Ilya Molchanov,et al.  Sharp identification regions in models with convex predictions: games, individual choice, and incomplete data , 2009 .

[22]  M. Queyranne,et al.  Combinatorial Bootstrap Inference IN in Prtially Identified Incomplete Structural Models , 2012 .

[23]  E. Tamer,et al.  Market Structure and Multiple Equilibria in Airline Markets , 2009 .

[24]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[25]  Marc Henry,et al.  Inference in Incomplete Models , 2006, 2102.12257.

[26]  Zvi Artstein,et al.  Distributions of random sets and random selections , 1983 .

[27]  L. Shapley Cores of convex games , 1971 .

[28]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[29]  Azeem M. Shaikh,et al.  Inference for identifiable parameters in partially identified econometric models , 2006 .

[30]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2009, 2102.04151.

[31]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[32]  Paul R. Milgrom,et al.  Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities , 1990 .

[33]  藤重 悟 Submodular functions and optimization , 1991 .

[34]  Alain Monfort,et al.  Coherency Conditions in Simultaneous Linear Equation Models with Endogenous Switching Regimes , 1980 .

[35]  X. Vives Nash equilibrium with strategic complementarities , 1990 .

[36]  T. Bresnahan,et al.  Entry in Monopoly Market , 1990 .

[37]  J. Laffont,et al.  EQUATION MODELS WITH ENDOGENOUS SWITCHING REGIMES , 1980 .

[38]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2011 .

[39]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[40]  T. Koopmans Optimum Utilization of the Transportation System , 1949 .

[41]  S. Stern,et al.  Long-Term Care and Family Bargaining , 2002 .

[42]  Sang Soo Park,et al.  Confidence sets for some partially identified parameters , 2010 .

[43]  V. Corradi,et al.  Testing for Optimal Monetary Policy via Moment Inequalities , 2018, Journal of Applied Econometrics.

[44]  Steven T. Berry,et al.  Identification in Models of Oligopoly Entry ∗ , 2006 .

[45]  Andrew Sweeting,et al.  Coordination Games, Multiple Equilibria and the Timing of Radio Commercials , 2005 .

[46]  D. M. Topkis Supermodularity and Complementarity , 1998 .

[47]  Han Hong,et al.  Identification and Estimation of a Discrete Game of Complete Information , 2010 .

[48]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[49]  Marc Henry,et al.  Sharp Bounds in the Binary Roy Model , 2012 .

[50]  F. Echenique,et al.  A Test For Monotone Comparative Statics , 2007 .

[51]  A methodology for constructing confldence regions with partially identifled models , 2006 .

[52]  D. R. Fulkerson,et al.  A Simple Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem , 1957, Canadian Journal of Mathematics.

[53]  Ivan A. Canay EL inference for partially identified models: Large deviations optimality and bootstrap validity , 2010 .

[54]  E. Tamer Incomplete Simultaneous Discrete Response Model with Multiple Equilibria , 2003 .

[55]  Boyan Jovanovic,et al.  Was the Great Depression a Low-Level Equilibrium? , 1991 .

[56]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[57]  Adam M. Rosen,et al.  Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities , 2006 .

[58]  H. Moulin Cooperative Microeconomics: A Game-Theoretic Introduction , 1995 .

[59]  Panos M. Pardalos,et al.  Combinatorial Optimization Algorithms , 2013 .

[60]  A. G. Gadzhiev Estimation and construction of confidence regions in regression models , 1995 .

[61]  Andrés Aradillas-López Pairwise-difference estimation of incomplete information games , 2012 .

[62]  S. Rachev,et al.  Mass transportation problems , 1998 .

[63]  Ilya Molchanov,et al.  Sharp identification regions in games , 2008 .

[64]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[65]  Boyan Jovanovic,et al.  Observable Implications of Models with Multiple Equilibria , 1989 .

[66]  Marc Henry,et al.  Optimal transportation and the falsifiability of incompletely specified economic models , 2010, 2102.04162.

[67]  Andrew Sweeting,et al.  The Strategic Timing Incentives of Commercial Radio Stations: An Empirical Analysis Using Multiple Equilibria , 2008 .