Fast converging path integrals for time-dependent potentials: I. Recursive calculation of short-time expansion of the propagator

We calculate the short-time expansion of the propagator for a general many-body quantum system in a time-dependent potential to orders that have not yet been accessible before. To this end the propagator is expressed in terms of a discretized effective potential, for which we derive and analytically solve a set of efficient recursion relations. Such a discretized effective potential can be used to substantially speed up numerical Monte-Carlo simulations for path integrals, or to set up various analytic approximation techniques to study dynamic properties of quantum systems in timedependent potentials. The analytically derived results are numerically verified by treating several simple one-dimensional models.

[1]  Systematically accelerated convergence of path integrals. , 2005, Physical review letters.

[2]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[3]  Short-time-evolved wave functions for solving quantum many-body problems , 2003, cond-mat/0306077.

[4]  Efficient calculation of energy spectra using path integrals , 2006, cond-mat/0612644.

[5]  Entanglement and dynamics of spin chains in periodically pulsed magnetic fields: accelerator modes. , 2006, Physical review letters.

[6]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[7]  I. S. Tupitsyn,et al.  Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems , 1997, cond-mat/9703200.

[8]  I. Peschel,et al.  Entanglement in a periodic quench , 2008, 0803.2655.

[9]  A. Pelster,et al.  Ultra-fast converging path-integral approach for rotating ideal Bose–Einstein condensates , 2010, 1001.1463.

[10]  Yannick Seurin,et al.  Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.

[11]  S. Doplicher,et al.  Mathematical Problems in Theoretical Physics , 1978 .

[12]  Antun Balaz,et al.  Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Fast Converging Path Integrals for Time-Dependent Potentials II: Generalization to Many-body Systems and Real-Time Formalism , 2010, 1011.5185.

[14]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[15]  Asymptotic properties of path integral ideals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[17]  A. Sandvik,et al.  Quantum Monte Carlo with directed loops. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Antun Balaz,et al.  Recursive Schrödinger equation approach to faster converging path integrals. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Siu A Chin,et al.  Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[21]  R. Schrader,et al.  Mathematical Problems in Theoretical Physics , 1982 .

[22]  J. Boronat,et al.  High order Chin actions in path integral Monte Carlo. , 2009, The Journal of chemical physics.

[23]  Aleksandar Belić,et al.  Properties of quantum systems via diagonalization of transition amplitudes. I. Discretization effects. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  David E. Miller,et al.  Critical velocity for superfluid flow across the BEC-BCS crossover. , 2007, Physical review letters.

[25]  Š. Janeček,et al.  Evolution-operator method for density functional theory , 2007 .

[26]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[27]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[28]  Johannes M. Mayrhofer,et al.  Extrapolated high-order propagators for path integral Monte Carlo simulations. , 2009, The Journal of chemical physics.

[29]  E. Baerends,et al.  Time-dependent density-matrix-functional theory , 2007 .

[30]  Sixth-order factorization of the evolution operator for time-dependent potentials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  E. Krotscheck,et al.  An arbitrary order diffusion algorithm for solving Schrödinger equations , 2009, Comput. Phys. Commun..

[32]  Yngve Öhrn,et al.  Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems , 1994 .

[33]  C. H. Mak,et al.  A multilevel blocking approach to the sign problem in real-time quantum Monte Carlo simulations , 1999 .

[34]  André D. Bandrauk,et al.  Exponential split operator methods for solving coupled time-dependent Schrödinger equations , 1993 .

[35]  A. Bogojevic,et al.  Fast convergence of path integrals for many-body systems , 2008, 0804.2762.

[36]  Rheonomic homogeneous point transformation and reparametrization in the path integral , 1989 .

[37]  Systematic speedup of path integrals of a generic N-fold discretized theory , 2005, cond-mat/0508546.

[38]  J. Dalibard,et al.  Vortex patterns in a fast rotating Bose-Einstein condensate , 2004, cond-mat/0410665.

[39]  On the generalization of the Duru-Kleinert-propagator transformations , 1992 .

[40]  D. Pritchard,et al.  Phase diagram for a Bose-Einstein condensate moving in an optical lattice. , 2007, Physical review letters.

[41]  D. Baye,et al.  Fourth-order factorization of the evolution operator for time-dependent potentials , 2003 .

[42]  S. Theodorakis,et al.  Emulation of the evolution of a Bose–Einstein condensate in a time-dependent harmonic trap , 2007 .

[43]  Sergio Blanes,et al.  Splitting methods for the time-dependent Schrödinger equation , 2000 .

[44]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[45]  N. Berloff,et al.  Dynamics of quantum vortices in a toroidal trap , 2008, 0812.4049.

[46]  Lana,et al.  Cluster algorithm for vertex models. , 1993, Physical review letters.

[47]  J. Zinn-Justin Path integrals in quantum mechanics , 2005 .

[48]  S. Stringari,et al.  Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap , 2005 .

[49]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[50]  B. B. Beard,et al.  Simulations of Discrete Quantum Systems in Continuous Euclidean Time. , 1996 .

[51]  S. Chin,et al.  Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials , 2002, nucl-th/0203008.

[52]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[53]  Generalization of Euler's summation formula to path integrals ⋆ , 2005, cond-mat/0508710.

[54]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[55]  R. Folk,et al.  Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[57]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[58]  The higher derivative expansion of the effective action by the string-inspired method. I , 1994, hep-ph/9401221.

[59]  A. Pelster,et al.  Dynamical properties of a rotating Bose-Einstein condensate , 2007, 0711.0088.

[60]  C Fort,et al.  Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice. , 2004, Physical review letters.

[61]  K. Hallberg New trends in density matrix renormalization , 2006, cond-mat/0609039.

[62]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  J. S. Shaari,et al.  Coupled-mode theory for Bose¿Einstein condensates with time dependent atomic scattering length , 2005 .

[64]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[65]  L. Cederbaum,et al.  Time-dependent multi-orbital mean-field for fragmented Bose-Einstein condensates , 2006, cond-mat/0607490.