Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies.

[1]  Charlie Tsai,et al.  Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides , 2015 .

[2]  P. Ajayan,et al.  Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide , 2015, Nature Communications.

[3]  P. Ajayan,et al.  Optoelectronic Crystal of Artificial Atoms in Strain-Textured MoS$_{2}$ , 2015 .

[4]  Haotian Wang,et al.  Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution , 2015, Nano Research.

[5]  Anubhav Jain,et al.  New Light‐Harvesting Materials Using Accurate and Efficient Bandgap Calculations , 2015 .

[6]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[7]  Jingyu Sun,et al.  Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. , 2014, ACS nano.

[8]  Jinhua Ye,et al.  MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. , 2014, ACS nano.

[9]  Charlie Tsai,et al.  Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. , 2014, Physical chemistry chemical physics : PCCP.

[10]  S. Khondaker,et al.  Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. , 2014, Nanoscale.

[11]  Yi Cui,et al.  Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. , 2014, ACS nano.

[12]  A. Peterson,et al.  Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts , 2014 .

[13]  T. Jaramillo,et al.  Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. , 2014, Nature chemistry.

[14]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[15]  B. Yildiz “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion , 2014 .

[16]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[17]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[18]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[19]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[20]  Etsuko Fujita,et al.  Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. , 2013, Chemical communications.

[21]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[22]  Simon Kurasch,et al.  From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation , 2013 .

[23]  T. Heinz,et al.  Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[25]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[26]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[27]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[28]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[29]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[30]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[31]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[32]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[33]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[35]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[36]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  T. Jaramillo,et al.  Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ Electrocatalysts , 2008 .

[38]  A. Gross,et al.  Influence of water on elementary reaction steps in electrocatalysis. , 2008, Faraday discussions.

[39]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[40]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[41]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[42]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[43]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[44]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[45]  M. Mavrikakis,et al.  Alloy catalysts designed from first principles , 2004, Nature materials.

[46]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[47]  D. Mihailovic,et al.  Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes , 2001, Science.

[48]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .