On a problem posed by Steve Smale

The 17th of the problems proposed by Steve Smale for the 21st century asks for the existence of a deterministic algorithm computing an approximate solution of a system of n complex polynomials in n unknowns in time polynomial, on the average, in the size N of the input system. A partial solution to this problem was given by Carlos Beltr an and Luis Miguel Pardo who exhibited a randomized algorithm doing so. In this paper we further extend this result in several directions. Firstly, we exhibit a linear homotopy algorithm that eciently implements a nonconstructive idea of

[1]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[2]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[3]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[4]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[5]  K. P. Choi On the medians of gamma distributions and an equation of Ramanujan , 1994 .

[6]  F. Cucker,et al.  Smoothed analysis of complex conic condition numbers , 2006, math/0605635.

[7]  S. Smale Mathematical problems for the next century , 1998 .

[8]  Carlos Beltrán,et al.  Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems , 2011, Found. Comput. Math..

[9]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[10]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[11]  Ralph Howard,et al.  The kinematic formula in Riemannian homogeneous spaces , 1993 .

[12]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[13]  Felipe Cucker,et al.  Adversarial smoothed analysis , 2010, J. Complex..

[14]  Yimin Wei,et al.  Smoothed analysis of some condition numbers , 2006, Numer. Linear Algebra Appl..

[15]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[16]  Carlos Beltrán,et al.  On Smale's 17th Problem: A Probabilistic Positive Solution , 2008, Found. Comput. Math..

[17]  Michael Shub,et al.  Complexity of Bezout’s Theorem VII: Distance Estimates in the Condition Metric , 2009, Found. Comput. Math..

[18]  D. Spielman,et al.  Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .

[19]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[20]  L. M. Pardo,et al.  Smale’s 17th problem: Average polynomial time to compute affine and projective solutions , 2008 .

[21]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[22]  Felipe Cucker,et al.  Smoothed Analysis of Moore-Penrose Inversion , 2010, SIAM J. Matrix Anal. Appl..

[23]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[24]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[25]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[26]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[27]  Mario Wschebor,et al.  Smoothed analysis of kappa(A) , 2004, J. Complex..

[28]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[29]  Michael Shub,et al.  Some Remarks on Bezout’s Theorem and Complexity Theory , 1993 .

[30]  James Renegar On the Worst-Case Arithmetic Complexity of Approximating Zeros of Systems of Polynomials , 1989, SIAM J. Comput..

[31]  Michael Shub,et al.  Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric , 2007, Found. Comput. Math..

[32]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[33]  Felipe Cucker,et al.  The probability that a slightly perturbed numerical analysis problem is difficult , 2006, Math. Comput..

[34]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .