Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics
暂无分享,去创建一个
[1] George Em Karniadakis,et al. Spectral Element Methods for Elliptic Problems in Nonsmooth Domains , 1995 .
[2] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[3] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering , 1998 .
[4] Raytcho D. Lazarov,et al. Higher-order finite element methods , 2005, Math. Comput..
[5] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[6] R. Glowinski,et al. Controllability Methods for the Computation of Time-Periodic Solutions; Application to Scattering , 1998 .
[7] S. Mönkölä,et al. Controllability method for acoustic scattering with spectral elements , 2007 .
[8] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[9] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[10] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[11] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[12] Tuomo Rossi,et al. Controllability method for the Helmholtz equation with higher-order discretizations , 2007, J. Comput. Phys..
[13] Erkki Heikkola,et al. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..
[14] J. Desanto. Mathematical and numerical aspects of wave propagation , 1998 .
[15] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[16] M. Paraschivoiu,et al. Investigation of a two-dimensional spectral element method for Helmholtz's equation , 2003 .
[17] L. Thompson. A review of finite-element methods for time-harmonic acoustics , 2006 .