States and parameters estimation in induction motor using Bayesian techniques
暂无分享,去创建一个
[1] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[2] Pablo A. Iglesias,et al. Optimal Noise Filtering in the Chemotactic Response of Escherichia coli , 2006, PLoS Comput. Biol..
[3] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[4] V. Aidala. Parameter estimation via the kalman filter , 1977 .
[5] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[6] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[7] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[8] Simo Särkkä,et al. On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..
[9] Joachim Holtz,et al. Sensorless control of induction motor drives , 2002, Proc. IEEE.
[10] Rudolph van der Merwe,et al. The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).