A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles

[1]  A. Putnis,et al.  Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex , 2005 .

[2]  Michael F. Hochella,et al.  Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability , 2005 .

[3]  Peter J. Eng,et al.  Structure and reactivity of the hydrated hematite (0001) surface , 2004 .

[4]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[5]  L. Yanhong,et al.  A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy , 2004 .

[6]  G. Brown,et al.  In Situ Grazing-Incidence Extended X-ray Absorption Fine Structure Study of Pb(II) Chemisorption on Hematite (0001) and (1-102) Surfaces , 2004 .

[7]  M. Hochella,et al.  The reactivity of seven Mn-oxides with Cr3+ aq: A comparative analysis of a complex, environmentally important redox reaction , 2003 .

[8]  K. Rosso,et al.  Ab Initio Determination of Edge Surface Structures for Dioctahedral 2:1 Phyllosilicates: Implications for Acid-Base Reactivity , 2003 .

[9]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[10]  K. Rosso,et al.  The structure of hematite (α-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations , 2003 .

[11]  R. Ewing,et al.  Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. , 2003, Environmental science & technology.

[12]  J. J. Morgan,et al.  Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen , 2002 .

[13]  P. Nico,et al.  Rapid photo-oxidation of Mn(II) mediated by humic substances , 2002 .

[14]  E. Ilton,et al.  Dynamic processes occurring at the CrIIIaq-manganite (γ-MnOOH) interface: simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution , 2002 .

[15]  M. Hochella Nanoscience and technology: the next revolution in the Earth sciences , 2002 .

[16]  T. Rajh,et al.  Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations , 2002 .

[17]  P. Casek,et al.  Electron redistribution in low-dimensional oxide structures , 2002 .

[18]  M. Hochella There’s plenty of room at the bottom: nanoscience in geochemistry , 2002 .

[19]  P. Kamat,et al.  Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclustersDedicated to Professor Frank Wilkinson on the occasion of his retirement. , 2002 .

[20]  Scot T. Martin,et al.  8. Atmospheric Nanoparticles , 2001 .

[21]  J. Drever,et al.  Geochemistry of suspended particles in a mine-affected mountain stream , 2001 .

[22]  Huifang Xu,et al.  Iron oxide coatings on sand grains from the Atlantic coastal plain: High-resolution transmission electron microscopy characterization , 2001 .

[23]  C. Noguera INSULATING OXIDES IN LOW DIMENSIONALITY: A THEORETICAL REVIEW , 2001 .

[24]  J. Banfield,et al.  Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. , 2000, Science.

[25]  K. Rosso,et al.  Ab Initio Calculation of Homogeneous Outer Sphere Electron Transfer Rates: Application to M(OH2)63+/2+Redox Couples , 2000 .

[26]  T. Shripathi,et al.  Quantum size effects in CuO nanoparticles , 2000 .

[27]  Karasyova,et al.  Strontium Sorption on Hematite at Elevated Temperatures. , 1999, Journal of colloid and interface science.

[28]  A. Putnis,et al.  A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport , 1999 .

[29]  D. Taylor,et al.  Pyrolusite surface transformations measured in real-time during the reactive transport of Co(II)EDTA2− , 1999 .

[30]  Jillian F. Banfield,et al.  Enhanced adsorption of molecules on surfaces of nanocrystalline particles , 1999 .

[31]  R. Feynman There’s plenty of room at the bottom , 1999 .

[32]  E. Wasserman,et al.  Molecular modeling of the surface charging of hematite. I. The calculation of proton affinities and acidities on a surface , 1999 .

[33]  M. Shuler,et al.  Production of Biogenic Mn Oxides by Leptothrix discophora SS-1 in a Chemically Defined Growth Medium and Evaluation of Their Pb Adsorption Characteristics , 1999, Applied and Environmental Microbiology.

[34]  Gordon E. Brown,et al.  Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces : synchrotron X-ray photoemission studies and thermodynamic calculations , 1998 .

[35]  J. Rustad,et al.  Interaction of water with the (1×1) and (2×1) surfaces of α-Fe2O3(012) , 1998 .

[36]  H. Nesbitt,et al.  XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism , 1998 .

[37]  R. Abell Scavenging of particulate and dissolved lead compounds by coprecipitation with manganese oxyhydroxides , 1998 .

[38]  P. Venema,et al.  Intrinsic proton affinity of reactive surface groups of metal(hydr)oxides: application to iron(hydr)oxides. , 1998 .

[39]  Zhiyu Wang,et al.  XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions , 1997 .

[40]  C. Swartz,et al.  An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand: Implications for colloid mobilization , 1997 .

[41]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[42]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[43]  V. Barrón,et al.  Surface Hydroxyl Configuration of Various Crystal Faces of Hematite and Goethite , 1996 .

[44]  B. Tebo,et al.  OXYGEN ISOTOPE ANALYSES OF CHEMICALLY AND MICROBIALLY PRODUCED MANGANESE OXIDES AND MANGANATES , 1995 .

[45]  Steven C. Smith,et al.  Oxidation and adsorption of Co(II)EDTA2− complexes in subsurface materials with iron and manganese oxide grain coatings , 1995 .

[46]  Arthur J. Nozik,et al.  Surface Electron Transfer Processes , 1995 .

[47]  Valerio,et al.  Theoretical study of electronic, magnetic, and structural properties of alpha -Fe2O3 (hematite). , 1995, Physical review. B, Condensed matter.

[48]  R. L. Wells,et al.  Determination of Relevant Size Parameters for Sonicated and Unsonicated Nanocrystalline GaAs Particles , 1995 .

[49]  M. Hochella,et al.  Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study , 1994 .

[50]  H. V. Lauer,et al.  Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.

[51]  J. Rimstidt,et al.  Measurement and analysis of rate data: The rate of reaction of ferric iron with pyrite , 1993 .

[52]  R. Morris,et al.  Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars , 1993 .

[53]  S. B. Weed,et al.  Association of Microcrystalline Goethite and Humic Acid in Some Oxisols from Brazil , 1992 .

[54]  J. Drever,et al.  Aquatic Chemical Kinetics , 1991 .

[55]  J. Banfield,et al.  The structure and origin of Fe-bearing platelets in metamorphic rutile , 1991 .

[56]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[57]  M. Hochella CHAPTER 3. ATOMIC STRUCTURE, MICROTOPOGRAPHY, COMPOSITION, AND REACTIVITY OF MINERAL SURFACES , 1990 .

[58]  M. Steigerwald,et al.  Semiconductor crystallites: a class of large molecules , 1990 .

[59]  R. Morris,et al.  Matrix effects for reflectivity spectra of dispersed nanophase (superparamagnetic) hematite with application to Martian spectral data , 1990 .

[60]  J. J. Morgan,et al.  Manganese(II) oxidation kinetics on metal oxide surfaces , 1989 .

[61]  P. Mulvaney,et al.  Charge trapping in the reductive dissolution of colloidal suspensions of iron(III) oxides , 1988 .

[62]  M. Schoonen,et al.  Kinetic paths for low temperature pyrite and marcasite formation from solution , 1988 .

[63]  B. Sulzberger,et al.  Redox processes catalyzed by hydrous oxide surfaces , 1988 .

[64]  M. Anpo,et al.  Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates , 1987 .

[65]  N. Sutin,et al.  Kinetics of the oxidation of metal complexes by manganese(III) aquo ions in acidic perchlorate media: The Mn(H2O)62+-Mn(H2O)63+ electron-exchange rate constant , 1985 .

[66]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[67]  J. J. Morgan,et al.  Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics. , 1984, Environmental science & technology.

[68]  W. Stumm,et al.  Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? , 1984 .

[69]  J. Hem Rates of manganese oxidation in aqueous systems , 1981 .

[70]  J. J. Morgan,et al.  Kinetics and product of ferrous iron oxygenation in aqueous systems , 1980 .

[71]  D. A. Shirley,et al.  The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2) , 1977 .

[72]  Thomas W. Healy,et al.  Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces , 1975 .

[73]  J. J. Morgan,et al.  Mechanism of autoxidation of manganese in aqueous solution , 1975 .

[74]  Jun Zhang,et al.  Surface structure of α-Fe2O3 nanocrystal observed by O K-edge X-ray absorption spectroscopy , 2003 .

[75]  S. E. O'reilly,et al.  Lead Sorption Efficiencies of Natural and Synthetic Mn and Fe-oxides , 2002 .

[76]  P. Walton,et al.  Tuning the metal-based redox potentials of manganese cis,cis-1,3,5-triaminocyclohexane complexes , 2001 .

[77]  Alexandra Navrotsky,et al.  Thermochemistry of Nanomaterials , 2001 .

[78]  R. Masel Chemical Kinetics And Catalysis , 2001 .

[79]  J. Banfield,et al.  Nanoparticles and the Environment , 2001 .

[80]  H. Yao,et al.  Determination of the size distribution of ultrafine particles based on a measurement of specific surface areas , 2001 .

[81]  C. Noguera Insulating Oxides in Low Dimensionality , 2001 .

[82]  D. Blowes,et al.  Mineralogy of mine wastes and strategies for remediation , 2000 .

[83]  R. Wiesendanger,et al.  Nanoscience and technology , 1998 .

[84]  J. Rimstidt,et al.  Linking microscopic and macroscopic data for heterogeneous reactions illustrated by the oxidation of manganese (II) at mineral surfaces , 1997 .

[85]  D. Nordstrom,et al.  Bacterially mediated mineral formation; insights into manganese(II) oxidation from molecular genetic and biochemical studies , 1997 .

[86]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[87]  W. Stumm Chemistry of the solid-water interface , 1992 .

[88]  C. Catlow,et al.  Atomistic Simulation of Defect Structures and Ion Transport in α‐Fe2O3 and α‐Cr2O3 , 1988 .

[89]  P. Brewer,et al.  COLORIMETRIC DETERMINATION OF MANGANESE IN ANOXIC WATERS1 , 1971 .

[90]  J. J. Morgan,et al.  Analytical Chemistry of Aqueous Manganese , 1965 .

[91]  David P. Shoemaker,et al.  Experiments in physical chemistry , 1962 .