Inverse transport problem of estimating point-like source using a Bayesian parametric method with MCMC

Recovering the origin of an incident after detection of a polluting substance in the environment is crucial to start the remediation procedures. The lack of observations, the measurement errors and the model uncertainties make the problem of source estimation an ill-posed inverse problem that requires regularization to determine a solution. The two most frequent methods of regularization are source parametrization and penalization of undesirable solutions. In this paper, the proposed approach combines both methods in order to obtain a strong regularization that is efficient in case of few and erroneous observations. Point sources with parametric temporal releases and parameter penalizations are incorporated in a Bayesian framework where observations and prior information are combined in a hierarchical probabilistic model and the posterior law is explored with a Markov Chain Monte Carlo sampling algorithm. Estimation of the source parameters is provided by the posterior mean and uncertainties are provided by the posterior variance. To validate the method, several simulated cases with different emission events are considered. Quality of the estimate as well as impact of source model errors are also investigated. Then, a comparison with two existing least squares methods is conducted, in various configurations of sensors and noise level. Finally, the behavior of the method is described on a strongly underdeterminate real case where only one sensor recorded the pollution.

[1]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[2]  Bithin Datta,et al.  Three-Dimensional Groundwater Contamination Source Identification Using Adaptive Simulated Annealing , 2013 .

[3]  P. Kathirgamanathan,et al.  Source release rate estimation of atmospheric pollution from a non-steady point source - Part 2: Source at an unknown location , 2003 .

[4]  P. Kathirgamanathan,et al.  Source Term Estimation of Pollution from an Instantaneous Point Source , 2002 .

[5]  P. Kitanidis,et al.  A geostatistical approach to contaminant source identification , 1997 .

[6]  A. Bagtzoglou,et al.  State of the Art Report on Mathematical Methods for Groundwater Pollution Source Identification , 2001 .

[7]  J. Idier Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[8]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[9]  L. Ingber Adaptive Simulated Annealing (ASA) , 1993 .

[10]  George Csordas,et al.  Basic partial differential equations , 1992 .

[11]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[12]  P. Domenico,et al.  Inverse Analytical Techniques Applied to Coincident Contaminant Distributions at Otis Air Force Base, Massachusetts , 1992 .

[13]  T. Ulrych,et al.  Minimum Relative Entropy Inversion: Theory and Application to Recovering the Release History of a Groundwater Contaminant , 1996 .

[14]  Arye Nehorai,et al.  Biochemical Transport Modeling and Bayesian Source Estimation in Realistic Environments , 2007, IEEE Transactions on Signal Processing.

[15]  D. Ouazar,et al.  Ground Water Contaminant Source and Transport Parameter Identification by Correlation Coefficient Optimization , 1998 .

[16]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[17]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  William P. Ball,et al.  Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware , 1999 .

[19]  Arye Nehorai,et al.  Landmine detection and localization using chemical sensor array processing , 2000, IEEE Trans. Signal Process..

[20]  Hubert B. Keller,et al.  Source localization based on pointwise concentration measurements , 2004 .

[21]  Z. J. Kabala,et al.  Recovering the release history of a groundwater contaminant using a non-linear least-squares method. , 2000 .

[22]  Ivan Dimov,et al.  A numerical approach for determination of sources in transport equations , 1996 .

[23]  Arye Nehorai,et al.  Detection and estimation of biochemical sources in arbitrary 2D environments , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[24]  Hui Wang,et al.  Characterization of groundwater contaminant source using Bayesian method , 2013, Stochastic Environmental Research and Risk Assessment.

[25]  T. Skaggs,et al.  Recovering the History of a Groundwater Contaminant Plume: Method of Quasi‐Reversibility , 1995 .

[26]  Hubert B. Keller,et al.  Source localization by spatially distributed electronic noses for advection and diffusion , 2005, IEEE Transactions on Signal Processing.

[27]  Marc Bocquet,et al.  Grid resolution dependence in the reconstruction of an atmospheric tracer source , 2005 .

[28]  Stergios I. Roumeliotis,et al.  Multi Robot Trajectory Generation for Single Source Explosion Parameter Estimation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[29]  Brian J. Wagner,et al.  Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling , 1992 .

[30]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[31]  R. Neupauer,et al.  Adjoint‐derived location and travel time probabilities for a multidimensional groundwater system , 2001 .

[32]  P. Kitanidis,et al.  Application of geostatistical inverse modeling to contaminant source identification at Dover AFB, Delaware , 2004 .

[33]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[34]  J. Kevorkian,et al.  Partial Differential Equations: Analytical Solution Techniques , 1990 .

[35]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[36]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[37]  Brian Borchers,et al.  A MATLAB implementation of the minimum relative entropy method for linear inverse problems , 2001 .

[38]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[39]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[40]  Allan D. Woodbury,et al.  Three-dimensional plume source reconstruction using minimum relative entropy inversion , 1998 .

[41]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[42]  Eugene Yee,et al.  Theory for Reconstruction of an Unknown Number of Contaminant Sources using Probabilistic Inference , 2008 .

[43]  Fue-Sang Lien,et al.  Bayesian inference for source determination with applications to a complex urban environment , 2007 .

[44]  Molly H. Shor,et al.  Model-based solution techniques for the source localization problem , 2000, IEEE Trans. Control. Syst. Technol..

[45]  Peter K. Kitanidis,et al.  The minimum structure solution to the inverse problem , 1997 .

[46]  Alessandro Fasso,et al.  Bayesian source detection and parameter estimation of a plume model based on sensor network measurements: Discussion , 2010 .

[47]  P. Kitanidis,et al.  Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling , 2004 .

[48]  Janusz A. Pudykiewicz,et al.  APPLICATION OF ADJOINT TRACER TRANSPORT EQUATIONS FOR EVALUATING SOURCE PARAMETERS , 1998 .

[49]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[50]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[51]  T. Skaggs,et al.  Recovering the release history of a groundwater contaminant , 1994 .

[52]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[53]  S. Gorelick,et al.  Identifying sources of groundwater pollution: An optimization approach , 1983 .

[54]  P. Kathirgamanathan Source Parameter Estimation of Atmospheric Pollution from Accidental Gas Releases , 2004 .

[55]  Jean-François Giovannelli,et al.  Contaminant source estimation in a two-layers porous environment using a Bayesian approach , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[56]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.