Asymptotically Exact Posteriori Error Estimates for the Local Discontinuous Galerkin Method Applied to Nonlinear Convection–Diffusion Problems

In this paper, we present and analyze implicit a posteriori error estimates for the local discontinuous Galerkin (LDG) method applied to nonlinear convection–diffusion problems in one space dimension. Optimal a priori error estimates for the solution and for the auxiliary variable that approximates the first-order derivative are derived in the $$L^2$$L2-norm for the semi-discrete formulation. More precisely, we identify special numerical fluxes and a suitable projection of the initial condition for the LDG scheme to achieve $$p+1$$p+1 order of convergence for the solution and its spatial derivative in the $$L^2$$L2-norm, when piecewise polynomials of degree at most p are used. We further prove that the derivative of the LDG solution is superconvergent with order $$p+1$$p+1 towards the derivative of a special projection of the exact solution. We use this result to prove that the LDG solution is superconvergent with order $$p+3/2$$p+3/2 towards a special Gauss–Radau projection of the exact solution. Our superconvergence results allow us to show that the leading error term on each element is proportional to the $$(p+1)$$(p+1)-degree right Radau polynomial. We use these results to construct asymptotically exact a posteriori error estimator. Furthermore, we prove that the a posteriori LDG error estimate converges at a fixed time to the true spatial error in the $$L^2$$L2-norm at $$\mathcal {O}(h^{p+3/2})$$O(hp+3/2) rate. Finally, we prove that the global effectivity index in the $$L^2$$L2-norm converge to unity at $$\mathcal {O}(h^{1/2})$$O(h1/2) rate. Our proofs are valid for arbitrary regular meshes using $$P^p$$Pp polynomials with $$p\ge 1$$p≥1. Finally, several numerical examples are given to validate the theoretical results.

[1]  Mahboub Baccouch A posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional nonlinear scalar conservation laws , 2014 .

[2]  Slimane Adjerid,et al.  Superconvergence of Discontinuous Finite Element Solutions for Transient Convection–diffusion Problems , 2005, J. Sci. Comput..

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  Chi-Wang Shu,et al.  Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension , 2010, SIAM J. Numer. Anal..

[5]  Chi-Wang Shu,et al.  Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations , 2007 .

[6]  Fatih Celiker,et al.  Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension , 2007, Math. Comput..

[7]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[8]  Zhimin Zhang,et al.  Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems , 2009, J. Sci. Comput..

[9]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[10]  Mahboub Baccouch,et al.  A local discontinuous Galerkin method for the second-order wave equation , 2012 .

[11]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[12]  Mahboub Baccouch,et al.  A Superconvergent Local Discontinuous Galerkin Method for Elliptic Problems , 2012, J. Sci. Comput..

[13]  Feng Zhang,et al.  Local Analysis of Local Discontinuous Galerkin Method for the Time-Dependent Singularly Perturbed Problem , 2014, Journal of Scientific Computing.

[14]  Mahboub Baccouch Optimal a posteriori error estimates of the local discontinuous Galerkin method for convection-diffusion problems in one space dimension , 2016 .

[15]  Paul Castillo,et al.  An Optimal Estimate for the Local Discontinuous Galerkin Method , 2000 .

[16]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[17]  Chi-Wang Shu,et al.  Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations , 2012, SIAM J. Numer. Anal..

[18]  Mahboub Baccouch,et al.  Superconvergence and a posteriori error estimates for the LDG method for convection-diffusion problems in one space dimension , 2014, Comput. Math. Appl..

[19]  Guido Kanschat,et al.  The local discontinuous Galerkin method for linearized incompressible fluid flow: a review , 2005 .

[20]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[21]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[22]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[23]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[24]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[25]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[26]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Chi-Wang,et al.  ANALYSIS OF SHARP SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS , 2015 .

[29]  Mahboub Baccouch,et al.  Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems , 2014, Appl. Math. Comput..

[30]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[31]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[32]  Paul Castillo,et al.  A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems , 2006 .

[33]  Mahboub Baccouch,et al.  Adaptivity and Error Estimation for Discontinuous Galerkin Methods , 2014 .

[34]  Mahboub Baccouch,et al.  Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes , 2011 .

[35]  Yao Cheng,et al.  Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations , 2016, Math. Comput..

[36]  Paul Castillo,et al.  A superconvergence result for discontinuous Galerkin methods applied to elliptic problems , 2003 .

[37]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[38]  Waixiang Cao,et al.  Superconvergence of Local Discontinuous Galerkin methods for one-dimensional linear parabolic equations , 2014, Math. Comput..

[39]  Boying Wu,et al.  Superconvergence of Discontinuous Galerkin Methods for Scalar Nonlinear Conservation Laws in One Space Dimension , 2012, SIAM J. Numer. Anal..

[40]  Yingda Cheng,et al.  Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations , 2009 .

[41]  Hailiang Liu,et al.  A local discontinuous Galerkin method for the Burgers–Poisson equation , 2015, Numerische Mathematik.

[42]  Mahboub Baccouch,et al.  A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids , 2014, Comput. Math. Appl..