Dual Carbon Enables Highly Reversible Alloying/Dealloying Behavior of Ultra-Small Bi Nanoparticles for Ultra-Stable Li Storage

[1]  Qingyu Li,et al.  Interfacial engineering enables Bi2S3@N-doped carbon nanospheres towards high performance anode for lithium-ion batteries , 2021, Electrochimica Acta.

[2]  Wei Luo,et al.  Hydrogen peroxide enabled two-dimensional molybdenum trioxide nanosheet clusters for enhanced surface Li-ion storage , 2021, Tungsten.

[3]  Feng Wu,et al.  High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors , 2021, Electrochemical Energy Reviews.

[4]  Xianwen Wu,et al.  Bi/C nanosheet microspheres with an open pore structure as anodes for sodium ion batteries with high capacity, excellent rate performance and long cycle life , 2021, Journal of Materials Chemistry A.

[5]  Fenghua Zheng,et al.  FeSe2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. , 2020, ACS nano.

[6]  Min Zhu,et al.  Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances. , 2020, ACS applied materials & interfaces.

[7]  M. Whittingham,et al.  Challenges and Development of Tin-Based Anode with High Volumetric Capacity for Li-Ion Batteries , 2020, Electrochemical Energy Reviews.

[8]  Jun Liu,et al.  Facile Synthesis of Yolk–Shell Bi@C Nanospheres with Superior Li-ion Storage Performances , 2020, Acta Metallurgica Sinica (English Letters).

[9]  Junzhi Li,et al.  Cavity containing core-shell Bi@C nanowires toward high performance lithium ion batteries , 2020 .

[10]  Hong‐Jie Peng,et al.  Bi Dots Confined by Functional Carbon as High‐Performance Anode for Lithium Ion Batteries , 2020, Advanced Functional Materials.

[11]  Jiang Zhou,et al.  Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes , 2020 .

[12]  Xianwen Wu,et al.  Raising Lithium Storage Performances of NaTi2(PO4)3 by Nitrogen and Sulfur Dual-Doped Carbon Layer , 2020, Journal of The Electrochemical Society.

[13]  F. Ciucci,et al.  Dual-phase MoS2 as a high-performance sodium-ion battery anode , 2020 .

[14]  Shihan Qi,et al.  Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries , 2020 .

[15]  Jun Liu,et al.  Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries , 2019, Chemical Engineering Journal.

[16]  Yunhua Xu,et al.  Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High‐Rate Sodium‐Ion Batteries , 2019, Advanced materials.

[17]  Chenghao Yang,et al.  Fe1−xS@S-doped carbon core–shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries , 2019, Journal of Materials Chemistry A.

[18]  Yurong Yan,et al.  An Investigation into the Charge‐Storage Mechanism of MnO@Graphite as Anode for Lithium‐Ion Batteries at Low Temperature , 2019, ChemElectroChem.

[19]  Xiaobo Ji,et al.  Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. , 2019, ACS applied materials & interfaces.

[20]  Meilin Liu,et al.  Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. , 2018, ACS nano.

[21]  Meilin Liu,et al.  Mechanistic Origin of the High Performance of Yolk@Shell Bi2S3@N-Doped Carbon Nanowire Electrodes. , 2018, ACS nano.

[22]  Zhiming Liu,et al.  Sandwich-like graphene-Bi2S3 hybrid derived from (BiO)2CO3 nanosheets as advanced anode materials for lithium/sodium ion batteries , 2018, Journal of Alloys and Compounds.

[23]  T. Masese,et al.  Interfacial engineering enables Bi@C-TiO microspheres as superpower and long life anode for lithium-ion batteries , 2018, Nano Energy.

[24]  Zhiming Liu,et al.  Bi@C Nanoplates Derived from (BiO)2 CO3 as an Enhanced Electrode Material for Lithium/Sodium-Ion Batteries , 2018, ChemistrySelect.

[25]  J. Ni,et al.  Materials Based on Antimony and Bismuth for Sodium Storage. , 2018, Chemistry.

[26]  Chunsheng Wang,et al.  Bi Nanoparticles Anchored in N-Doped Porous Carbon as Anode of High Energy Density Lithium Ion Battery , 2018, Nano-Micro Letters.

[27]  Y. Tong,et al.  In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward High‐Energy and Stable Nickel–Bismuth Batteries , 2018, Advanced materials.

[28]  Jun Lu,et al.  High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries , 2018, Electrochemical Energy Reviews.

[29]  Chenghao Yang,et al.  MoS2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life , 2018 .

[30]  Rencheng Jin,et al.  CNTs@C@Bi2Se3 composite as an improved-performance anode for lithium ion batteries , 2017 .

[31]  Wei Sun,et al.  The electrochemical exploration of double carbon-wrapped Na 3 V 2 (PO 4 ) 3 : Towards long-time cycling and superior rate sodium-ion battery cathode , 2017 .

[32]  Yuanhua Lin,et al.  Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes. , 2017, Nanoscale.

[33]  Jiang Zhou,et al.  Chrysanthemum-like Bi2S3 nanostructures: A promising anode material for lithium-ion batteries and sodium-ion batteries , 2017 .

[34]  Xiaoping Yang,et al.  Bio‐Inspired Rose‐Like Bi@Nitrogen‐Enriched Carbon towards High‐Performance Lithium‐Ion Batteries , 2017 .

[35]  S. Liang,et al.  Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries , 2017 .

[36]  Naiqing Zhang,et al.  Preparation of polypyrrole-coated Bi2O3@CMK-3 nanocomposite for electrochemical lithium storage , 2017 .

[37]  A. Hardy,et al.  Combustion synthesis as a low temperature route to Li4Ti5O12 based powders for lithium ion battery anodes , 2017 .

[38]  Yan-Jie Wang,et al.  Swollen Ammoniated MoS2 with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage , 2017 .

[39]  Yan Yu,et al.  New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. , 2017, Nano letters.

[40]  Jun Liu,et al.  Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. , 2017, ACS applied materials & interfaces.

[41]  X. Lou,et al.  Formation of Uniform N‐doped Carbon‐Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties , 2016 .

[42]  Zhian Zhang,et al.  Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries. , 2016, Chemistry.

[43]  J. Yue,et al.  Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries , 2015 .

[44]  Xiuling Li,et al.  Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2 : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. , 2015, Small.

[45]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[46]  Daniel Sharon,et al.  On the challenge of developing advanced technologies for electrochemical energy storage and conversion , 2014 .

[47]  Wenhui Shi,et al.  Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. , 2013, Small.

[48]  S. Deng,et al.  Bismuth Oxide: A New Lithium-Ion Battery Anode. , 2013, Journal of materials chemistry. A.

[49]  P. Shen,et al.  Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. , 2012, ACS applied materials & interfaces.

[50]  Doron Aurbach,et al.  On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts , 2010 .

[51]  Huijuan Zhang,et al.  Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. , 2010, Small.

[52]  Cheol‐Min Park,et al.  Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries , 2009 .

[53]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[54]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[55]  Reuel Shinnar,et al.  Solar thermal energy: The forgotten energy source , 2007 .