New constructions of weak epsilon-nets

A finite set ? ? R<sup>d</sup> is a <i>weak e-net</i> for an <i>n</i> -point set <i>X</i> ? <b>R</b> <sup> <i>d</i> </sup> (with respect to convex sets) if <i>N</i> intersects every convex set <i>K</i> with | <i>K</i> n <i>X</i> |= en. We give an alternative, and arguably simpler, proof of the fact, first shown by Chazelle et al. [7], that every point set <i>X</i> in <b>R</b> <sup> <i>d</i> </sup> admits a weak e-net of cardinality <i>O</i> (e <sup> <i>-d</i> </sup> polylog(1/e)). Moreover, for a number of special point sets (e.g., for points on the moment curve), our method gives substantially better bounds. The construction yields an algorithm to construct such weak eps-nets in time <i>O</i> ( <i>n</i> ln(1e)). We also prove, by a different method, a near-linear upper bound for points uniformly distributed on the (d--1)-dimensional sphere.

[1]  Micha Sharir,et al.  On the Zone of a Surface in a Hyperplane Arrangement , 1991, WADS.

[2]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[3]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[4]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[5]  Jirí Matousek,et al.  A Lower Bound for Weak ɛ -Nets in High Dimension , 2002, Discret. Comput. Geom..

[6]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[7]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[8]  Jirí Matousek,et al.  On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..

[9]  Jirí Matousek,et al.  Efficient partition trees , 1992, Discret. Comput. Geom..

[10]  Leonidas J. Guibas,et al.  Improved bounds on weak ε-nets for convex sets , 1993, STOC.