Lower bounds for orthogonal range searching: I. The reporting case

We establish lower bounds on the complexity of orthogonal range reporting in the static case. Given a collection of <italic>n</italic> points in <italic>d</italic>-space and a box [<italic>a</italic><subscrpt>1</subscrpt>, <italic>b</italic><subscrpt>1</subscrpt>] X … X [<italic>a<subscrpt>d</subscrpt></italic>, <italic>b<subscrpt>d</subscrpt></italic>], report every point whose <italic>i</italic>th coordinate lies in [<italic>a<subscrpt>i</subscrpt>, b<subscrpt>i</subscrpt></italic>], for each <italic>i</italic> = l, … , <italic>d</italic>. The collection of points is fixed once and for all and can be preprocessed. The box, on the other hand, constitutes a query that must be answered online. It is shown that on a pointer machine a query time of <italic>O</italic>(<italic>k</italic> + polylog(<italic>n</italic>)), where <italic>k</italic> is the number of points to be reported, can only be achieved at the expense of &OHgr;(<italic>n</italic>(log <italic>n</italic>/log log <italic>n</italic>)<supscrpt><italic>d</italic>-1</supscrpt>) storage. Interestingly, these bounds are optimal in the pointer machine model, but they can be improved (ever so slightly) on a random access machine. In a companion paper, we address the related problem of adding up weights assigned to the points in the query box.

[1]  Dan E. Willard,et al.  New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..

[2]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[3]  Bernard Chazelle,et al.  Filtering search: A new approach to query-answering , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[4]  George S. Lueker,et al.  Adding range restriction capability to dynamic data structures , 1985, JACM.

[5]  Journal of the Association for Computing Machinery , 1961, Nature.

[6]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[7]  Dan E. Willard Predicate-Oriented Database Search Algorithms , 1978, Outstanding Dissertations in the Computer Sciences.

[8]  Bernard Chazelle,et al.  Linear space data structures for two types of range search , 1987, Discret. Comput. Geom..

[9]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[10]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[11]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[12]  Robert E. Tarjan,et al.  A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..

[13]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[14]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[15]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..