Frontal Dynamics near and following Frontal Collapse

Abstract A nonhydrostatic numerical model is used to simulate two-dimensional frontogenesis forced by either horizontal deformation or shear. Both inviscid frontogenesis prior to frontal collapse and frontogenesis with horizontal diffusion following collapse are considered. The numerical solutions generally agree well with semigeostrophic (SG) theory, though differences can be substantial for intense fronts. Certain deviations from SG that have been previously discussed in the literature area, upon closer examination, associated with spurious gravity waves produced by inadequate resolution or by the initialization of the numerical model. Even when spurious waves are eliminated, however, significant deviations from SG still exist: gravity waves are emitted by the frontogenesis when the cross-front scale becomes sufficiently small, and higher-order corrections to SG may also be present. In the postcollapse solutions (where they are most prominent), the emitted waves are stationary with respect to the front ...