ULISES: An Open Source Code for Extrinsic Calibrations and Planview Generations in Coastal Video Monitoring Systems

ABSTRACT Simarro, G.; Ribas, F.; Álvarez, A.; Guillén, J.; Chic, Ò., and Orfila, A., 2017. ULISES: An open source code for extrinsic calibrations and planview generations in coastal video monitoring systems. Video monitoring systems have become a powerful and low-cost tool in coastal studies. Extrinsic calibration of the cameras is compulsory to get quantitative information from the images. This paper presents an Open Source Software for extrinsic calibration and for the generation of related products such as planviews and time stacks. The methodology employed for extrinsic calibration minimizes errors comprising ground control points, the camera position, and, whenever is available, the horizon line. The dip of the horizon due to Earth curvature is corrected for. Planview generation is performed in such a way that the user can decide the smoothing degree in the transition zone between cameras. Time stack generation has been designed to save the minimum number of pixels in order to obtain the desired transect in the real world. The reader will find a versatile software meant to manage large data sets in a simple way.

[1]  Aart Kroon,et al.  Characteristics and dynamics of surfzone transverse finger bars , 2007 .

[2]  Massimo Brignone,et al.  A system for beach video-monitoring: Beachkeeper plus , 2012, Comput. Geosci..

[3]  Raúl Medina,et al.  The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management , 2007 .

[4]  K. Holland,et al.  Quantification of swash flows using video-based particle image velocimetry , 2001 .

[5]  Jamie MacMahan,et al.  Megacusps on rip channel bathymetry: Observations and modeling , 2011 .

[6]  Giovanni Coco,et al.  Observations of nearshore crescentic sandbars , 2004 .

[7]  B. G. Ruessink,et al.  Daily to seasonal cross‐shore behaviour of quasi‐persistent intertidal beach morphology , 2007 .

[8]  Jorge Guillén,et al.  Dynamics of single-barred embayed beaches , 2011 .

[9]  Nathaniel G. Plant,et al.  Practical use of video imagery in nearshore oceanographic field studies , 1997 .

[10]  Robert A. Holman,et al.  Video-based observations of nearshore sand ripples and ripple migration , 2007 .

[11]  K. Todd Holland,et al.  BEACH CUSP FORMATION AND SPACINGS AT DUCK, USA , 1998 .

[12]  Robert A. Holman,et al.  Quantification of nearshore morphology based on video imaging , 2004 .

[13]  Christopher B. Field,et al.  Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. , 2003 .

[14]  Luis Pedro Almeida,et al.  Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach , 2011, Ocean Dynamics.

[15]  Gerhard Masselink,et al.  Morphodynamic variability of high-energy macrotidal beaches, Cornwall, UK , 2014 .

[16]  R. Holman,et al.  Morphodynamics of intermediate beaches: a video imaging and numerical modelling study , 2004 .

[17]  Robert A. Holman,et al.  Quantification of sand bar morphology: A video technique based on wave dissipation , 1989 .

[18]  Shukai Chi,et al.  Simultaneous calibration of the intrinsic and extrinsic parameters of structured-light sensors , 2014 .

[19]  D. Huntley,et al.  Video observations of beach cusp morphodynamics , 2008 .

[20]  B. Ruessink,et al.  State dynamics of a double sandbar system , 2011 .

[21]  B. G. Ruessink,et al.  Video observations of nearshore bar behaviour. Part 1: alongshore uniform variability , 2003 .

[22]  R. Medina,et al.  Coastline sand waves on a low-energy beach at ``El Puntal'' spit, Spain , 2008 .

[23]  B. G. Ruessink,et al.  Observations and modeling of surf zone transverse finger bars at the Gold Coast, Australia , 2014, Ocean Dynamics.

[24]  Roland Garnier,et al.  Intertidal finger bars at El Puntal, Bay of Santander, Spain: observation and forcing analysis , 2013 .

[25]  Ian L Turner,et al.  A video-based technique for mapping intertidal beach bathymetry , 2003 .

[26]  Jorge Guillén,et al.  Shoreline dynamics and beach rotation of artificial embayed beaches , 2008 .

[27]  K. T. Holland,et al.  Runup kinematics on a natural beach , 1995 .

[28]  J. A. Roelvink,et al.  Nearshore subtidal bathymetry from time-exposure video images , 2005 .

[29]  P. Perona,et al.  Visual methods for three-dimensional modeling , 1999 .

[30]  Michael Blumenstein,et al.  Objective Beach-State Classification From Optical Sensing of Cross-Shore Dissipation Profiles , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Todd K. Holland,et al.  Application of the linear dispersion relation with respect to depth inversion and remotely sensed imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  B. Zanuttigh,et al.  Integrated monitoring of the hydro-morphodynamics of a beach protected by low crested detached breakwaters , 2010 .

[33]  Robert A. Holman,et al.  Measuring run-up on a natural beach , 1984 .

[34]  R. Holman,et al.  The history and technical capabilities of Argus , 2007 .

[35]  R. Holman,et al.  An optical technique for the measurement of longshore currents , 2003 .

[36]  Joachim Denzler,et al.  Intrinsic and extrinsic active self-calibration of multi-camera systems , 2013, Machine Vision and Applications.

[37]  Nathaniel G. Plant,et al.  Intertidal beach profile estimation using video images , 1997 .

[38]  Salvador Balle,et al.  An open source, low cost video‐based coastal monitoring system , 2010 .

[39]  Roshanka Ranasinghe,et al.  Rip spacing and persistence on an embayed beach , 2006 .

[40]  P. Ciavola,et al.  Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification , 2011 .

[41]  Ana Silva,et al.  COSMOS: A lightweight coastal video monitoring system , 2012, Comput. Geosci..

[42]  Giovanni Coco,et al.  On the use of variance images for runup and shoreline detection , 2015 .

[43]  G. Simarro,et al.  Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate , 2011 .