Boosting Methods for Predicting Firemen Interventions
暂无分享,去创建一个
Christophe Guyeux | Guillaume Royer | Héber H. Arcolezi | Selene Cerna | Héber H. Arcolezi | Guillaume Royer | C. Guyeux | Selene Cerna
[1] Christophe Guyeux,et al. Anonymously forecasting the number and nature of firefighting operations , 2019, IDEAS.
[2] Les services de l’Etat à La Réunion. Ministère de l'écologie, du développement durable et de l'énergie , 2015 .
[3] Lin Liu,et al. Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework , 2019, International journal of environmental research and public health.
[4] Jean-Marc Nicod,et al. Firemen Prediction by Using Neural Networks: A Real Case Study , 2019, IntelliSys.
[5] Harris Drucker,et al. Improving Regressors using Boosting Techniques , 1997, ICML.
[6] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[7] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.
[8] André Deschamps. MINISTÈRE DE L'ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L'ÉNERGIE , 2012 .
[9] Raphaël Couturier,et al. Long Short-Term Memory for Predicting Firemen Interventions , 2019, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT).
[10] Henry Leung,et al. A Video Based Fire Smoke Detection Using Robust AdaBoost , 2018, Sensors.
[11] Hongbo Zhu,et al. Vehicle Accident Risk Prediction Based on AdaBoost-SO in VANETs , 2019, IEEE Access.
[12] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[13] Yong Qi,et al. An accident prediction approach based on XGBoost , 2017, 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE).
[14] Jing Chen,et al. Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network , 2019, IEEE Access.
[15] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.