Categorizing metadata to help mobilize computable biomedical knowledge

Computable biomedical knowledge artifacts (CBKs) are digital objects conveying biomedical knowledge in machine‐interpretable structures. As more CBKs are produced and their complexity increases, the value obtained from sharing CBKs grows. Mobilizing CBKs and sharing them widely can only be achieved if the CBKs are findable, accessible, interoperable, reusable, and trustable (FAIR+T). To help mobilize CBKs, we describe our efforts to outline metadata categories to make CBKs FAIR+T.

[1]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[2]  Carl Lagoze,et al.  The Knowledge Object Reference Ontology (KORO): A formalism to support management and sharing of computable biomedical knowledge for learning health systems , 2018, Learning health systems.

[3]  Wei Shi,et al.  Digital Knowledge Objects and Digital Knowledge Object Clusters: Unit Holdings in a Learning Health System Knowledge Repository , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[4]  William W Stead,et al.  Biomedical informatics: changing what physicians need to know and how they learn. , 2011, Academic medicine : journal of the Association of American Medical Colleges.

[5]  Alfonso Valencia,et al.  Towards FAIR principles for research software , 2020, Data Sci..

[6]  Martin Doerr,et al.  The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata , 2003, AI Mag..

[7]  James Cheney,et al.  PROV-O: The PROV ontology:W3C recommendation 30 April 2013 , 2013 .

[8]  John A. Kunze,et al.  The Dublin Core Metadata Element Set , 2007, RFC.

[9]  Quddus Chong,et al.  Ontology Based Metadata Management in Medical Domains , 2003, J. Res. Pract. Inf. Technol..

[10]  Olivier Bodenreider,et al.  The NLM Value Set Authority Center , 2013, MedInfo.

[11]  Carole A. Goble,et al.  Automating experiments using semantic data in a bioinformatics grid , 2004, IEEE Intelligent Systems.

[12]  Carole A. Goble,et al.  Workflow-Centric Research Objects: A First Class Citizen in the Scholarly Discourse , 2012, SePublica@ESWC.

[13]  J Chard,et al.  Drug and Disease Model Resources: A Consortium to Create Standards and Tools to Enhance Model-Based Drug Development , 2013, CPT: pharmacometrics & systems pharmacology.

[14]  Joshua E. Richardson,et al.  20 Achieving evidence interoperability in the computer age: setting evidence on FHIR , 2019, Oral Presentations.

[15]  L. Etheredge,et al.  A rapid-learning health system. , 2007, Health affairs.

[16]  E. Garcia,et al.  Specifying semantic conformance profiles in reusable learning object metadata , 2004, Information Technology Based Proceedings of the FIfth International Conference onHigher Education and Training, 2004. ITHET 2004..

[17]  Niklas Elmqvist,et al.  Clinical Concept Value Sets and Interoperability in Health Data Analytics , 2018, AMIA.

[18]  Howard Balshem,et al.  GRADE guidelines: 3. Rating the quality of evidence. , 2011, Journal of clinical epidemiology.

[19]  Edward H. Shortliffe,et al.  Evaluation Methods in Biomedical Informatics , 2000 .

[20]  Michel Dumontier,et al.  The center for expanded data annotation and retrieval , 2015, J. Am. Medical Informatics Assoc..

[21]  Jun Cheng,et al.  The Kipoi repository accelerates community exchange and reuse of predictive models for genomics , 2019, Nature Biotechnology.

[22]  Kristen Miller,et al.  To Share is Human! Advancing Evidence into Practice through a National Repository of Interoperable Clinical Decision Support , 2020, Applied Clinical Informatics.

[23]  Martin J. O'Connor,et al.  The CEDAR Workbench: An Ontology-Assisted Environment for Authoring Metadata that Describe Scientific Experiments , 2017, SEMWEB.

[24]  H. Lehmann,et al.  It is time for computable evidence synthesis: The COVID-19 Knowledge Accelerator initiative , 2020, J. Am. Medical Informatics Assoc..

[25]  Robert Wilensky,et al.  A framework for distributed digital object services , 2006, International Journal on Digital Libraries.

[26]  Stephen M. Downs,et al.  Desiderata for sharable computable biomedical knowledge for learning health systems , 2018, Learning health systems.

[27]  Charles P. Friedman,et al.  Computable knowledge: An imperative for Learning Health Systems , 2019, Learning health systems.

[28]  S. Phillips,et al.  Relational knowledge: the foundation of higher cognition , 2010, Trends in Cognitive Sciences.

[29]  John Fox,et al.  Disseminating medical knowledge: the PROforma approach , 1998, Artif. Intell. Medicine.

[30]  Chao Zhang,et al.  paper2repo: GitHub Repository Recommendation for Academic Papers , 2020, WWW.

[31]  Paul A. Harris,et al.  PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability , 2016, J. Am. Medical Informatics Assoc..

[32]  Werner Ceusters,et al.  Aboutness: towards foundations for the Information Artifact Ontology , 2015, ICBO.

[33]  Tomasz Miksa,et al.  Identifying impact of software dependencies on replicability of biomedical workflows , 2016, J. Biomed. Informatics.

[34]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[35]  Richard Müller,et al.  BPMN for Healthcare Processes , 2011, ZEUS.

[36]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[37]  Cristina Perez The RDA's Metadata Standards Directory: Information Gathering , 2013 .

[38]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[39]  Didier Dubois,et al.  Handling Topical Metadata Regarding the Validity and Completeness of Multiple-Source Information: A Possibilistic Approach , 2017, SUM.

[40]  Allen Newell,et al.  Human problem solving: The state of the theory in 1970. , 1971 .

[41]  B. Schutt Sorting things out. , 1970, The American journal of nursing.

[42]  Wei Wang,et al.  Aztec: A Platform to Render Biomedical Software Findable, Accessible, Interoperable, and Reusable , 2017, ArXiv.

[43]  Clement J. McDonald,et al.  Development of the Logical Observation Identifier Names and Codes (LOINC) vocabulary. , 1998, Journal of the American Medical Informatics Association : JAMIA.

[44]  Xiaobo Zhou,et al.  Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture , 2014, J. Am. Medical Informatics Assoc..

[45]  J. Overhage,et al.  Sorting Things Out: Classification and Its Consequences , 2001, Annals of Internal Medicine.

[46]  Jane Greenberg,et al.  Metadata and Digital Information , 2010 .

[47]  Peter Wittenburg,et al.  Digital Objects as Drivers towards Convergence in Data Infrastructures , 2019 .

[48]  Sandra Payette,et al.  A metadata architecture for digital libraries , 1998, Proceedings IEEE International Forum on Research and Technology Advances in Digital Libraries -ADL'98-.

[49]  Marc S. Williams,et al.  Patient-Centered Precision Health In A Learning Health Care System: Geisinger's Genomic Medicine Experience. , 2018, Health affairs.

[50]  G. Guyatt,et al.  GRADE: an emerging consensus on rating quality of evidence and strength of recommendations , 2008, BMJ : British Medical Journal.

[51]  Mohammed T Ansari,et al.  The GRADE Working Group clarifies the construct of certainty of evidence. , 2017, Journal of clinical epidemiology.

[52]  Joan Starr,et al.  isCitedBy: A Metadata Scheme for DataCite , 2011, D Lib Mag..

[53]  Jane Greenberg Metadata and Digital Information [ELIS Classic] , 2017 .

[54]  Gregory Cooper Causal Network Discovery from Biomedical and Clinical Data , 2018 .

[55]  Luciano Floridi,et al.  Semantic information and the network theory of account , 2010, Synthese.

[56]  Juan Antonio Juanes Méndez,et al.  Transforming Unstructured Clinical Free-Text Corpora into Reconfigurable Medical Digital Collections , 2019, 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS).

[57]  Jihoon Kim,et al.  A multi-layered framework for disseminating knowledge for computer-based decision support , 2011, J. Am. Medical Informatics Assoc..

[58]  Justin J W Powell,et al.  Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900–2011 , 2015 .

[59]  Daniel S. Katz,et al.  Software citation principles , 2016, PeerJ Comput. Sci..

[60]  Betsy L. Humphreys De Facto, De Rigueur, and Even Useful: Standards for the Published Literature and Their Relationship to Medical Informatics , 1990 .

[61]  V. Hasselblad,et al.  Effect of Clinical Decision-Support Systems , 2012, Annals of Internal Medicine.

[62]  Omolola Ogunyemi,et al.  Review Paper: The InterMed Approach to Sharable Computer-interpretable Guidelines: A Review , 2004, J. Am. Medical Informatics Assoc..