Supercloseness of Linear DG-FEM and Its Superconvergence Based on the Polynomial Preserving Recovery for Helmholtz Equation

In this paper we study the supercloseness property of the linear discontinuous Galerkin (DG) finite element method and its superconvergence behavior after post-processing by the polynomial preserving recovery (PPR). The error estimate with explicit dependence on the wave number k, the penalty parameter $$\mu $$μ and the mesh condition parameter $$\alpha $$α is derived. We prove the supercloseness between the DG finite element solution and the linear interpolation and the superconvergence for the recovered gradient by the PPR under the assumption $$k(kh)^2\le C_0$$k(kh)2≤C0 (h is the mesh size) and certain mesh conditions. Furthermore, we estimate the error between the DG numerical gradient and recovered gradient, which motivates us to define the a posteriori error estimator and design a Richardson extrapolation to post-process the recovered gradient by PPR. Finally, some numerical examples are provided to confirm the theoretical results of superconvergence analysis.

[1]  Tie Zhang,et al.  The derivative patch interpolation recovery technique and superconvergence for the discontinuous Galerkin method , 2014 .

[2]  Haijun Wu,et al.  Superconvergence analysis of linear FEM based on the polynomial preserving recovery and Richardson extrapolation for Helmholtz equation with high wave number , 2017, 1703.00156.

[3]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[4]  Junping Wang,et al.  Asymptotic expansions andL∞-error estimates for mixed finite element methods for second order elliptic problems , 1989 .

[5]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Jim Douglas,et al.  APPROXIMATION OF SCALAR WAVES IN THE SPACE-FREQUENCY DOMAIN , 1994 .

[8]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[9]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[10]  Ivo Marek,et al.  Superconvergence results on mildly structured triangulations , 2000 .

[11]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[12]  Zhimin Zhang,et al.  Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..

[13]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[14]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[15]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[18]  Yu Du,et al.  Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2015, Comput. Math. Appl..

[19]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[20]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[21]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[22]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[23]  R. B. Kellogg,et al.  A scattering problem for the Helmholtz equation , 1979 .

[24]  Zhimin Zhang,et al.  Polynomial preserving recovery for anisotropic and irregular grids , 2004 .

[25]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[26]  Jens Markus Melenk,et al.  General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..

[27]  Haijun Wu,et al.  Linear continuous interior penalty finite element method for Helmholtz equation With High Wave Number: One‐Dimensional Analysis , 2012, 1211.1424.

[28]  Lingxue Zhu,et al.  Preasymptotic Error Analysis of High Order Interior Penalty Discontinuous Galerkin Methods for the Helmholtz Equation with High Wave Number , 2016, J. Sci. Comput..

[29]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[30]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[31]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[32]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[33]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..

[34]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[35]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[36]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[37]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[38]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[39]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[40]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[41]  Haijun Wu,et al.  Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number , 2014, SIAM J. Numer. Anal..

[42]  Zhang,et al.  ASYMPTOTIC ERROR EXPANSION AND DEFECT CORRECTION FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS , 1998 .

[43]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[44]  Zhang Zhi-min Asymptotic Error Expansion and Extrapolation for Finite Element , 2006 .