Particle filtering for positioning and tracking applications

A Bayesian approach to positioning and tracking applications naturally leads to a recursive estimation formulation. The recently invented particle filter provides a numerical solution to the non-tr ...

[1]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[2]  A. Marrs,et al.  Comparison of the KF and particle filter based out-of-sequence measurement filtering algorithms , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[3]  Dan S. Necsulescu,et al.  Extended Kalman filter-based sensor fusion for operational space control of a robot arm , 2002, IEEE Trans. Instrum. Meas..

[4]  H. P. Blom An efficient filter for abruptly changing systems , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  David V. Stallard,et al.  Angle-only tracking filter in modified spherical coordinates , 1991 .

[6]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[7]  J. A. Volpe Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Positioning Syst , 2001 .

[8]  B. Wahlberg On the Identification and Approximation of Linear Systems , 1987 .

[9]  N. Gordon A hybrid bootstrap filter for target tracking in clutter , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Fredrik Tjärnström,et al.  Variance Expressions and Model Reduction in System Identification , 2002 .

[11]  Robin J. Evans,et al.  An information theoretic approach to observer path design for bearings-only tracking , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[12]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[13]  Fredrik Gustafsson,et al.  Particle filter for underwater terrain navigation , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[14]  Petar M. Djuric,et al.  An efficient fixed-point implementation of residual resampling scheme for high-speed particle filters , 2004, IEEE Signal Processing Letters.

[15]  H. Sorenson,et al.  Bayesian Parameter Estimation , 2006, Statistical Inference for Engineers and Data Scientists.

[16]  M. Norrlof,et al.  Iterative learning control of a flexible robot arm using accelerometers , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[17]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[18]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[19]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[20]  Anders Høst-Madsen,et al.  Effects of sampling and quantization on single-tone frequency estimation , 2000, IEEE Trans. Signal Process..

[21]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[22]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[23]  H. V. Trees,et al.  Utilization of Modified Polar Coordinates for BearingsOnly Tracking , 2007 .

[24]  B. Widrow A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory , 1956 .

[25]  Ragnar Wallin,et al.  Optimization Algorithms for System Analysis and Identification , 2004 .

[26]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[27]  K. Forsman Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .

[28]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[29]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[30]  M. Jirstrand Constructive Methods for Inequality Constraints in Control , 1998 .

[31]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .

[32]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[33]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[34]  Anders Stenman,et al.  Model on Demand: Algorithms, Analysis and Applications , 1999 .

[35]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[36]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[37]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[38]  S.J. Dunham,et al.  Alternatives to GPS , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[39]  Måns Östring,et al.  Modeling and Control of a Bending Backwards Industrial Robot , 2003 .

[40]  Thiagalingam Kirubarajan,et al.  Out-of-sequence measurement processing for tracking ground target using particle filters , 2002, Proceedings, IEEE Aerospace Conference.

[41]  B. Bengtsson On some Control Problems for Queues , 1982 .

[42]  Håkan Hjalmarsson Aspects on Incomplete Modeling in System Identification , 1993 .

[43]  M. Norrlof,et al.  Bayesian position estimation of an industrial robot using multiple sensors , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[44]  P. Nordlund Sequential Monte Carlo Filters and Integrated Navigation , 2002 .

[45]  Ke Wang-Chen Transformation and Symbolic Calculations in Filtering and Control , 1994 .

[46]  Alan V. Oppenheim,et al.  Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  Hans Driessen,et al.  An efficient particle filter for jump Markov nonlinear systems , 2004 .

[48]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[49]  Branko Ristic,et al.  Comparison of the particle filter with range-parameterized and modified polar EKFs for angle-only tracking , 2000, SPIE Defense + Commercial Sensing.

[50]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[51]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[52]  Ola Härkegård,et al.  Backstepping and control allocation with applications to flight control , 2003 .

[53]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[54]  Fredrik Gustafsson,et al.  Particle filtering and Cramer-Rao lower bound for underwater navigation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[55]  J. E. Handschin Monte Carlo techniques for prediction and filtering of non-linear stochastic processes , 1970 .

[56]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[57]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[58]  Mats Viberg,et al.  Subspace fitting concepts in sensor array processing , 1990 .

[59]  Jake K. Aggarwal,et al.  Matching Aerial Images to 3-D Terrain Maps , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Patric Jensfelt,et al.  Approaches to Mobile Robot Localization in Indoor Environments , 2001 .

[61]  J. Gunnarsson Symbolic Methods and Tools for Discrete Event Dynamic Systems , 1997 .

[62]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[63]  J. Aggarwal,et al.  Navigation using image sequence analysis and 3-D terrain matching , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[64]  W. K. Stewart,et al.  Terrain-relative navigation for autonomous underwater vehicles , 1997 .

[65]  F. Gustafsson,et al.  Model-based statistical tracking and decision making for collision avoidance application , 2004, Proceedings of the 2004 American Control Conference.

[66]  Inger Klein,et al.  Automatic Synthesis of Sequential Control Schemes , 1993 .

[67]  Svante Gunnarsson Frequency Domain Aspects of Modeling and Control in Adaptive Systems , 1988 .

[68]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[69]  N. Peach,et al.  Bearings-only tracking using a set of range-parameterised extended Kalman filters , 1995 .

[70]  Simon J. Godsill,et al.  Monte Carlo smoothing with application to audio signal enhancement , 2002, IEEE Trans. Signal Process..

[71]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[72]  R. Deriche,et al.  A terrain referenced underwater positioning using sonar bathymetric profiles and multiscale analysis , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[73]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[74]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[75]  Rickard Karlsson,et al.  Simulation Based Methods for Target Tracking , 2002 .

[76]  H. Jonson A Newton Method for Solving Non-Linear Optimal Control Problems with General Constraints , 1983 .

[77]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[78]  Petar M. Djuric,et al.  Gaussian sum particle filtering for dynamic state space models , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[79]  Mille Millnert Identification and Control of Systems Subject to Abrupt Changes , 1983 .

[80]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[81]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[82]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[83]  P. Pérez,et al.  Tracking multiple objects with particle filtering , 2002 .

[84]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[85]  Jeroen D. Hol,et al.  Resampling in particle filters , 2004 .

[86]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[87]  F. Gustafsson,et al.  Complexity analysis of the marginalized particle filter , 2005, IEEE Transactions on Signal Processing.

[88]  Robin J. Evans,et al.  Comparison of suboptimal strategies for optimal own-ship maneuvers in bearings-only tracking , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[89]  X. Rong Li,et al.  Survey of maneuvering target tracking: dynamic models , 2000, SPIE Defense + Commercial Sensing.

[90]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[91]  A. Isaksson On System Identification in one and two Dimensions with Signal Processing Applications , 1988 .

[92]  Peter Andersson,et al.  Adaptive Forgetting in Recursive Identification through Multiple Models , 1985 .

[93]  F. Gustafsson Estimation of Discrete Parameters in Linear Systems , 1993 .

[94]  Fredrik Gunnarsson Power control in cellular radio system: Analysis, design and estimation , 2000 .

[95]  Jakob Roll Local and Piecewise Affine Approaches to System Identification , 2003 .

[96]  Y. Boers On the number of samples to be drawn in particle filtering , 1999 .

[97]  Hisashi Tanizaki,et al.  Nonlinear and nonnormal filters using Monte Carlo methods , 1997 .

[98]  Dieter Fox,et al.  Real-time particle filters , 2004, Proceedings of the IEEE.

[99]  P. Robinson,et al.  Modified spherical coordinates for radar , 1994 .

[100]  Lennart Ljung,et al.  Adaptive control based on explicit criterion minimization , 1985, Autom..

[101]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[102]  Multiple model estimation using the bootstrap filter , 1998 .

[103]  Mikael Norrlöf,et al.  An adaptive iterative learning control algorithm with experiments on an industrial robot , 2002, IEEE Trans. Robotics Autom..

[104]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[105]  H. Cramér Mathematical methods of statistics , 1947 .

[106]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[107]  Jonas Jansson Tracking and decision making for automotive collision avoidance , 2002 .

[108]  Jan-Erik Strömberg,et al.  A Mode Switching Modelling Philosophy , 1994 .

[109]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[110]  Magnus Larsson,et al.  Behavioral and Structural Model Based Approaches to Discrete Diagnosis , 1999 .

[111]  Valur Einarsson Model Checking Methods for Mode Switching Systems , 2000 .

[112]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[113]  T. McKelvey Identification of State-Space Models from Time and Frequency Data , 1995 .

[114]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[115]  J R Treat,et al.  TRI-LEVEL STUDY OF THE CAUSES OF TRAFFIC ACCIDENTS: FINAL REPORT , 1979 .

[116]  R. Fisher 001: On an Absolute Criterion for Fitting Frequency Curves. , 1912 .

[117]  N. Bergman Bayesian Inference in Terrain Navigation , 1997 .

[118]  J. C. Hung,et al.  Performance evaluation of six terrain stochastic linearization techniques for TAN , 1991, Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991.

[119]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[120]  Yaakov Bar-Shalom,et al.  Design of an interacting multiple model algorithm for air traffic control tracking , 1993, IEEE Trans. Control. Syst. Technol..

[121]  Alessandro De Luca,et al.  A frequency-domain approach to learning control: implementation for a robot manipulator , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[122]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[123]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[124]  Jonas Blom Power Control in Cellular Radio Systems , 1998 .

[125]  J. Geweke,et al.  BAYESIAN INFERENCE IN ECONOMETRIC MODELS USING , 1989 .

[126]  A. Holtsberg,et al.  Estimation and confidence in bearings only tracking , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[127]  Kjell Nordström Uncertainty, Robustness and Sensitivity Reduction in the Design of Single Input Control Systems , 1987 .

[128]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[129]  Anders Holtsberg A Statistical Analysis of Bearings-Only Tracking , 1992 .

[130]  P. Lindskog Methods, Algorithms and Tools for System Identification Based on Prior Knowledge , 1996 .

[131]  Allan Gut,et al.  An intermediate course in probability , 1995 .

[132]  H. Fortell Algebraic Approaches to Normal Forms and Zero Dynamics , 1995 .

[133]  T. Karlsson Terrain Aided Underwater Navigation using Bayesian Statistics , 2002 .

[134]  Roy L. Streit,et al.  A comparison of the JPDAF and PMHT tracking algorithms , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[135]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[136]  Zhe Chen,et al.  BITAN-II: an improved terrain aided navigation algorithm , 1996, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation.

[137]  Fredrik Gustafsson,et al.  Range estimation using angle-only target tracking with particle filters , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[138]  T. R. Kronhamn,et al.  Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive ownship motion control , 1998 .

[139]  Sangjin Hong,et al.  Performance and complexity analysis of adaptive particle filtering for tracking applications , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[140]  K. Edström Switched Bond Graphs : Simulation and Analysis , 1999 .

[141]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[142]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[143]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[144]  Christophe Andrieu,et al.  Iterative algorithms for optimal state estimation of jump Markov linear systems , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[145]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[146]  Jonas Elbornsson,et al.  Analysis, Estimation and Compensation of Mismatch Effects in A/D Converters , 2003 .

[147]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[148]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[149]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[150]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[151]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[152]  C. Andrieu,et al.  A Particle Filter for Model Based Audio Source Separation , 2000 .

[153]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[154]  Van Overbeek On-Line Structure Selection for the Identification of Multivariable Systems , 1982 .

[155]  Predrag Pucar Modeling and Segmentation using Multiple Models , 1995 .

[156]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[157]  Branko Ristic,et al.  Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters , 2004, EURASIP J. Adv. Signal Process..

[158]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[159]  Thomas Sch On Computational Methods for Nonlinear Estimation , 2003 .

[160]  Mikael Norrlöf,et al.  Iterative Learning Control : Analysis, Design, and Experiments , 2000 .

[161]  Tommy Svensson Mathematical Tools and Software for Analysis and Design of Nonlinear Control Systems , 1992 .

[162]  Arnaud Doucet,et al.  Markov chain Monte Carlo data association for target tracking , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[163]  P. Willett,et al.  Fusion of quantized measurements via particle filtering , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[164]  Y. Bar-Shalom Tracking and data association , 1988 .

[165]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[166]  Donald Reid The application of multiple target tracking theory to ocean surveillance , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[167]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[168]  Neil J. Gordon,et al.  Littoral tracking using particle filter , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[169]  Marc-Alain Simard,et al.  Central level fusion of radar and IRST contacts and the choice of coordinate system , 1993, Defense, Security, and Sensing.

[170]  Peter A. J. Nagy Tools for Knowledge-Based Signal Processing with Applications to System Identification , 1992 .

[171]  S. Andersson On Dimension Reduction in Sensor Array Signal Processing , 1992 .

[172]  Mikael Norrlöf,et al.  PGT - A path Generation Toolbox for MatLab (v0.1) , 2003 .

[173]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[174]  S. Taylor,et al.  Kendall's Advanced Theory of Statistics, Volume 1 (5th Edition) , 1988 .

[175]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[176]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[177]  D. Avitzour Stochastic simulation Bayesian approach to multitarget tracking , 1995 .

[178]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[179]  J. Sjöberg Non-Linear System Identification with Neural Networks , 1995 .

[180]  S. Ljung Fast Algorithms for Integral Equations and Least Squares Identification Problems , 1983 .

[181]  B. Widrow,et al.  Statistical theory of quantization , 1996 .

[182]  Neil J. Gordon,et al.  Tracking in the presence of intermittent spurious objects and clutter , 1998, Defense, Security, and Sensing.