Tonotopic organization of human auditory association cortex

[1]  A. Papanicolaou,et al.  Visual evoked magnetic fields reveal activity in the superior temporal sulcus. , 1993, Electroencephalography and clinical neurophysiology.

[2]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[3]  L. Kaufman,et al.  Behavioral lifetime of human auditory sensory memory predicted by physiological measures. , 1992, Science.

[4]  L. Kaufman,et al.  Human auditory primary and association cortex have differing lifetimes for activation traces , 1992, Brain Research.

[5]  R. Poritsky Neuroanatomy: A Functional Atlas of Parts and Pathways , 1992 .

[6]  R Llinás,et al.  Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. , 1992, Acta oto-laryngologica.

[7]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  C. Gross,et al.  Auditory association cortex lesions impair auditory short-term memory in monkeys. , 1990, Science.

[9]  K. Lehnertz,et al.  Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. , 1989, Electroencephalography and clinical neurophysiology.

[10]  John H. Martin Neuroanatomy: Text and Atlas , 1989 .

[11]  K. Lehnertz,et al.  Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. , 1988, Electroencephalography and clinical neurophysiology.

[12]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Source localization of long-latency auditory evoked magnetic fields in human temporal cortex. , 1987, Electroencephalography and clinical neurophysiology. Supplement.

[14]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[15]  R Hari,et al.  Neuromagnetic responses to frequency modulation of a continuous tone. , 1986, Acta oto-laryngologica. Supplementum.

[16]  Different Sources of Transient and Steady State Responses in Human Auditory Cortex Revealed by Neuromagnetic Fields a , 1984 .

[17]  R. Hari,et al.  Studies of auditory evoked magnetic and electric responses: Modality specificity and modelling , 1983 .

[18]  D. Pandya,et al.  Association areas of the cerebral cortex , 1982, Trends in Neurosciences.

[19]  C Elberling,et al.  Cortical magnetic fields evoked by frequency glides of a continuous tone. , 1982, Electroencephalography and clinical neurophysiology.

[20]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[21]  C. Elberling,et al.  Auditory magnetic fields: source location and 'tonotopical organization' in the right hemisphere of the human brain. , 1982, Scandinavian audiology.

[22]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[23]  M W Mahowald,et al.  Asymmetry of the lateral (sylvian) fissures in man , 1976, Neurology.

[24]  J. Wolpaw,et al.  A temporal component of the auditory evoked response. , 1975, Electroencephalography and clinical neurophysiology.

[25]  H. Vaughan,et al.  The sources and intracerebral distribution of auditory evoked potentials in the alert rhesus monkey , 1975, Brain Research.

[26]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.