Hybrid AI models allow label-free identification and classification of pancreatic tumor repopulating cell population.

[1]  S. Vaidyanathan,et al.  A hybrid convolutional neural network‐support vector machine architecture for classification of super‐resolution enhanced chromosome images , 2022, Expert Syst. J. Knowl. Eng..

[2]  Jiawei Han,et al.  K-Means Clustering , 2021, Learn Data Mining Through Excel.

[3]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[4]  T. Ha,et al.  COL2A1 Is a Novel Biomarker of Melanoma Tumor Repopulating Cells , 2020, Biomedicines.

[5]  Farhan Chowdhury,et al.  Machine Learning Approach to Raman Spectrum Analysis of MIA PaCa-2 Pancreatic Cancer Tumor Repopulating Cells for Classification and Feature Analysis , 2020, Life.

[6]  Muljono,et al.  The Determination of Cluster Number at k-Mean Using Elbow Method and Purity Evaluation on Headline News , 2018, 2018 International Seminar on Application for Technology of Information and Communication.

[7]  Anas M. Saad,et al.  Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study , 2018, BMC cancer.

[8]  Ning Wang,et al.  Cdc42-dependent modulation of rigidity sensing and cell spreading in tumor repopulating cells. , 2018, Biochemical and biophysical research communications.

[9]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[11]  Hongwei Gong,et al.  Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles , 2016, Cell Research.

[12]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[15]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[16]  Yong Li,et al.  Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression , 2014, Nature Communications.

[17]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[18]  Jing Liu,et al.  Soft fibrin gels promote selection and growth of tumourigenic cells , 2012, Nature Materials.

[19]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[20]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[21]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[22]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[23]  Cecil C. Bridges,et al.  Hierarchical Cluster Analysis , 1966 .

[24]  E. Diamandis,et al.  Pancreatic cancer. , 2013, Clinical chemistry.

[25]  Bridget S Wilson,et al.  Using Hierarchical Clustering and Dendrograms to Quantify the Clustering of Membrane Proteins , 2011, Bulletin of Mathematical Biology.