Investigating Smooth Multiple Regression by the Method of Average Derivatives

Abstract Let (x 1, …, xk, y) be a random vector where y denotes a response on the vector x of predictor variables. In this article we propose a technique [termed average derivative estimation (ADE)] for studying the mean response m(x) = E(y | x) through the estimation of the k vector of average derivatives δ = E(m′). The ADE procedure involves two stages: first estimate δ using an estimator , and then approximate m(x) by ), where ĝ is an estimator of the univariate regression of y on . We argue that the ADE procedure exhibits several attractive characteristics: data summarization through interpretable coefficients, graphical depiction of the possible nonlinearity between y and , and theoretical properties consistent with dimension reduction. We motivate the ADE procedure using examples of models that take the form . In this framework, δ is shown to be proportional to β and [mcirc](x) infers m(x) exactly. The focus of the procedure is on the estimator , which is based on a simple average of kernel smoother...

[1]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[2]  Eugene F. Schuster,et al.  Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .

[3]  Rudolf Beran Adaptive estimates for autoregressive processes , 1976 .

[4]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[5]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[6]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[7]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[8]  P. Bickel On Adaptive Estimation , 1982 .

[9]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[10]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[11]  Charles F. Manski,et al.  Adaptive estimation of non–linear regression models , 1984 .

[12]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[13]  James L. Powell,et al.  Symmetrically Trimmed Least Squares Estimation For Tobit Models , 1986 .

[14]  C. J. Stone,et al.  The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .

[15]  B. Yandell,et al.  Automatic Smoothing of Regression Functions in Generalized Linear Models , 1986 .

[16]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[17]  Wolfgang Härdle,et al.  Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .

[18]  H. Ichimura Estimation of single index models , 1987 .

[19]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[20]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[21]  VERHALTEN DES EUROSID BEIM 90 GRAD-SEITENAUFPRALL IM VERGLEICH ZU PTMO SOWIE US-SID, HYBRID II UND APROD , 1988 .

[22]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[23]  James Stephen Marron,et al.  Semiparametric Comparison of Regression Curves , 1990 .

[24]  W. Härdle,et al.  Empirical evidence on the law of demand , 1991 .

[25]  Thomas M. Stoker Consistent estimation of scaled coefficients , 2011 .

[26]  Generalized Linear Models (GLIM) , 2014 .