Daily timescale dynamics of planktonic foraminifera shell-size distributions

Planktonic foraminifera (PF) shells comprise a significant fraction of the global oceanic carbonate flux and serve as a primary archive of the history of the oceans. Yet, a limited understanding of their life cycles dynamics and biological rhythms, hampers their application as palaeoceanographic proxies. Here, we present the flux of ten PF species and their shell-size distributions at a daily timescale resolution in the Gulf of Aqaba (GOA), northern Red Sea. We report diameter measurements of ~13,500 shells, associated with ten PF species, retrieved using an automated time-series sediment trap deployed at a water depth of ~410 m (seafloor depth 610 m) throughout more than a full annual cycle between 2015 and 2016. Most of the PF species display a wide intraspecific shell-size distribution among adult PF, while six abundant species (G. ruber, G. rubescens + G. tenellus, G. glutinata, G. calida and G. siphonifera) display significantly smaller shell-sizes compared with corresponding specimens from sediment traps and seafloor sediments across other tropical, subtropical and upwelling regions. The results indicate that PF generation cycles can be classified according to three patterns: (1) Quiescent: minimal shell-size and extended life cycles due to unfavorable conditions and food scarcity when the water column is stratified and oligotrophic, (2) Transient: the gradual increase of Chlorophyll-a (Chl-a) concentrations and food availability enhance shorter life-cycles, although PF do not necessarily reach maximal shell-sizes, (3) Successive: PF fluxes and Chl-a concentrations are maximal, the generation time is extended and individuals might display growth to maximal shell-sizes.

[1]  M. Kučera,et al.  Rare but persistent asexual reproduction explains the success of planktonic foraminifera in polar oceans , 2022, Journal of Plankton Research.

[2]  T. Lin,et al.  Response of planktonic foraminifera to seasonal and interannual hydrographic changes: Sediment trap record from the northern South China Sea , 2022, Frontiers in Earth Science.

[3]  M. Kučera,et al.  Determinants of Planktonic Foraminifera Calcite Flux: Implications for the Prediction of Intra‐ and Inter‐Annual Pelagic Carbonate Budgets , 2021 .

[4]  M. Kučera,et al.  Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean , 2021, Biogeosciences.

[5]  G. Kontakiotis,et al.  Recent planktonic foraminifera population and size response to Eastern Mediterranean hydrography , 2020 .

[6]  A. Torfstein,et al.  The daily resolved temperature dependence and structure of planktonic foraminifera blooms , 2020, Scientific Reports.

[7]  C. Benitez‐Nelson,et al.  Extensive morphological variability in asexually produced planktic foraminifera , 2020, Science Advances.

[8]  K. Kimoto,et al.  Observation of asexual reproduction with symbiont transmission in planktonic foraminifera , 2020, Journal of Plankton Research.

[9]  A. Torfstein,et al.  Bulk and Export Production Fluxes in the Gulf of Aqaba, Northern Red Sea , 2020 .

[10]  R. Schiebel,et al.  Three-dimensional analysis of inter-and intraspecific variation in ontogenetic growth trajectories of planktonic foraminifera , 2020 .

[11]  T. Hill,et al.  Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton , 2020, Scientific Reports.

[12]  M. Kučera,et al.  Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment , 2020, Ecology and evolution.

[13]  M. Kučera,et al.  Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides , 2019, PloS one.

[14]  Tom Shlesinger,et al.  Breakdown in spawning synchrony: A silent threat to coral persistence , 2019, Science.

[15]  A. Ridgwell,et al.  A trait-based modelling approach to planktonic foraminifera ecology , 2018, Biogeosciences.

[16]  A. Torfstein,et al.  Seasonal flux patterns of planktonic foraminifera in a deep, oligotrophic, marginal sea: Sediment trap time series from the Gulf of Aqaba, northern Red Sea , 2018, Deep Sea Research Part I: Oceanographic Research Papers.

[17]  K. Kimoto,et al.  Effect of nutritional condition on photosymbiotic consortium of cultured Globigerinoides sacculifer (Rhizaria, Foraminifera) , 2017, Symbiosis.

[18]  J. Erez,et al.  Testing the utility of geochemical proxies for paleoproductivity in oxic sedimentary marine settings of the Gulf of Aqaba, Red Sea , 2017 .

[19]  David Iluz,et al.  The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat) , 2017, Scientific Reports.

[20]  R. Schiebel,et al.  Planktic Foraminifers in the Modern Ocean , 2017 .

[21]  M. Kučera,et al.  Seasonal Variation in Shell Calcification of Planktonic Foraminifera in the NE Atlantic Reveals Species-Specific Response to Temperature, Productivity, and Optimum Growth Conditions , 2016, PloS one.

[22]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[23]  L. Jonkers,et al.  Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico , 2014 .

[24]  M. Conte,et al.  Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic , 2014 .

[25]  Hui‐Ling Lin The seasonal succession of modern planktonic foraminifera: Sediment traps observations from southwest Taiwan waters , 2014 .

[26]  R. Spielhagen,et al.  Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean , 2014 .

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  A. Post,et al.  Nitrite dynamics in the open ocean - clues from seasonal and diurnal variations , 2012 .

[29]  H. Gildor,et al.  The general circulation of the Gulf of Aqaba (Gulf of Eilat) revisited: The interplay between the exchange flow through the Straits of Tiran and surface fluxes , 2011 .

[30]  F. Raible,et al.  Another place, another timer: Marine species and the rhythms of life , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[32]  F. Peeters,et al.  Seasonal stratification, shell flux, and oxygen isotope dynamics of left‐coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic , 2010 .

[33]  H. Moel,et al.  Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification , 2009 .

[34]  W. Howard,et al.  Reduced calcification in modern Southern Ocean planktonic foraminifera , 2009 .

[35]  E. Boltovskoy Globigerinita clarkei (Rögl & Bolli) — an unfairly ignored small planktic foraminifer , 2008 .

[36]  Michal Kucera,et al.  Chapter Six Planktonic Foraminifera as Tracers of Past Oceanic Environments , 2007 .

[37]  M. Kučera,et al.  Biogeography and evolution of body size in marine plankton , 2006 .

[38]  K. Kimoto,et al.  The "unusual" reproduction of planktic foraminifera: an asexual reproductive phase of Neogloboquadrina pachyderma (Ehrenberg) , 2006 .

[39]  D. Kroon,et al.  Lunar cycles and seasonal variations in deposition fluxes of planktic foraminiferal shell carbonate to the deep South Atlantic (central Walvis Ridge) , 2005 .

[40]  G. Fischer,et al.  Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data , 2005 .

[41]  Christoph Hemleben,et al.  Modern planktic foraminifera , 2005 .

[42]  R. Schiebel,et al.  Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation , 2004 .

[43]  K. Arrigo,et al.  The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: Evidence from SeaWiFS and MODIS , 2003 .

[44]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[45]  R. Schiebel,et al.  Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients , 2001 .

[46]  U. Sommer The scarcity of medium sized phytoplankton in the northern Red Sea explained by strong bottom -up and weak top-down control , 2000 .

[47]  Frank Peeters,et al.  A SIZE ANALYSIS OF PLANKTIC FORAMINIFERA FROM THE ARABIAN SEA , 1999 .

[48]  Gerold Wefer,et al.  Use of proxies in paleoceanography : examples from the South Atlantic , 1999 .

[49]  G. Fischer,et al.  Clues to Ocean History: a Brief Overview of Proxies , 1999 .

[50]  R. Schiebel,et al.  Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic , 1997 .

[51]  J. Erez,et al.  Vanadium in foraminiferal calcite: Evaluation of a method to determine paleo-seawater vanadium concentrations , 1996 .

[52]  A. Mix,et al.  Environmental control of living symbiotic and asymbiotic foraminifera of the California Current , 1995 .

[53]  D. Lindell,et al.  Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea , 1995 .

[54]  Janet Sprintall,et al.  Evidence of the barrier layer in the surface layer of the tropics , 1992 .

[55]  J. Erez,et al.  On the Life History of Planktonic Foraminifera: Lunar Reproduction Cycle in Globigerinoides Sacculifer (Brady) , 1991 .

[56]  C. Hemleben,et al.  Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers , 1990 .

[57]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[58]  Christoph Hemleben,et al.  Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified byGlobigerinoides sacculifer (Brady) andG. Ruber (d'Orbigny) , 1987 .

[59]  W. Gardner,et al.  STANDING STOCK, VERTICAL DISTRIBUTION AND FLUX OF PLANKTONIC FORAMINIFERA IN THE PANAMA BASIN , 1985 .

[60]  Kozo Takahashi,et al.  Planktonic foraminifera: factors controlling sinking speeds , 1984 .

[61]  A. Almogi‐Labin Population dynamics of planktic Foraminifera and Pteropoda Gulf of Aqaba, Red Sea , 1984 .

[62]  O. Anderson,et al.  Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer , 1982 .

[63]  D. Caron,et al.  Effects of variations in light intensity on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture , 1982, Journal of the Marine Biological Association of the United Kingdom.

[64]  C. Hemleben,et al.  Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep sargasso sea☆ , 1981 .

[65]  D. Caron,et al.  Effects of feeding frequency on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture , 1981, Journal of the Marine Biological Association of the United Kingdom.

[66]  E. Padan,et al.  Primary production in a desert-enclosed sea— the Gulf of Elat (Aqaba), Red Sea , 1979 .

[67]  A. Winter,et al.  Distribution of living coccolithophore assemblages in the Gulf of Elat ('Aqaba) , 1979 .

[68]  O. Anderson,et al.  Lunar Periodicity of Reproduction in the Planktonic Foraminifer Hastigerina pelagica , 1979 .

[69]  B. Kimor,et al.  Microplankton of the Gulf of Elat: Aspects of seasonal and bathymetric distribution , 1977 .

[70]  A. Bé An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera , 1977 .

[71]  O. Anderson,et al.  Gametogenesis in planktonic foraminifera. , 1976, Science.

[72]  V. Polezhaev Effect of a , 1974 .

[73]  F. Rögl,et al.  Holocene to Pleistocene Planktonic Foraminifera of Leg 15, Site 147 (Cariaco Basin [Trench], Caribbean Sea) and Their Climatic Interpretation , 1973 .