Random strongly regular graphs?
暂无分享,去创建一个
[1] S. Shrikhande. The uniqueness of the L_2 association scheme , 1958 .
[2] H. Wielandt,et al. Permutation groups through invariant relations and invariant functions , 1969 .
[3] Peter J. Cameron,et al. Strongly regular graphs , 2003 .
[4] G. M.,et al. Theory of Groups of Finite Order , 1911, Nature.
[5] A. Neumaier. Strongly regular graphs with smallest eigenvalue —m , 1979 .
[6] Yu. V. Glebskii,et al. Range and degree of realizability of formulas in the restricted predicate calculus , 1969 .
[7] W. D. Wallis,et al. Construction of strongly regular graphs using affine designs , 1971, Bulletin of the Australian Mathematical Society.
[8] William M. Kantor,et al. Exponential numbers of two-weight codes, difference sets and symmetric designs , 1983, Discret. Math..
[9] N. Wormald,et al. Models of the , 2010 .
[10] Richard M. Wilson,et al. Nonisomorphic Steiner triple systems , 1974 .
[11] J. Seidel. Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .
[12] B. Bollobás. Surveys in Combinatorics , 1979 .
[13] László Babai. Almost All Steiner Triple Systems Are Asymmetric , 1980 .
[14] Béla Bollobás,et al. Graphs which Contain all Small Graphs , 1981, Eur. J. Comb..
[15] P. Cameron,et al. PERMUTATION GROUPS , 2019, Group Theory for Physicists.
[16] Ronald L. Graham,et al. The Mathematics of Paul Erdős II , 1997 .
[17] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[18] Brendan D. McKay,et al. Maximising the Permanent of (0, 1)-Matrices and the Number of Extensions of Latin Rectangles , 1998, Electron. J. Comb..
[19] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .
[20] W. Kantor,et al. New prolific constructions of strongly regular graphs , 2002 .
[21] Brendan D. McKay,et al. Most Latin Squares Have Many Subsquares , 1999, J. Comb. Theory A.
[22] A. A. Makhnev,et al. Strongly regular graphs with λ=1 , 1988 .
[23] Brendan D. McKay,et al. Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.
[24] P. Matthews,et al. Generating uniformly distributed random latin squares , 1996 .
[25] W. Burnside,et al. Theory of Groups of Finite Order , 1909 .