A new technique for ARMA-system identification and rational approximation

The fundamental problem of identifying a linear time-invariant system from measured samples of its output response to a known input is addressed, utilizing a new and simple deterministic theory founded on well-established passive network concepts. The analysis, together with documented numerical results, demonstrates that the proposed method achieves two goals: stable rational minimum-phase transfer functions can be identified with a priori knowledge of either numerator or denominator degrees; and stable rational minimum-phase Pade-like approximations appear to be generated automatically in the nonrational case. To substantiate these claims, a detailed theoretical exposition of the basic ideas, an extensive discussion of numerical results, and a summary of related results are given. >

[1]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[2]  J. Fuchs,et al.  ARMA-Order estimation via matrix perturbation theory , 1986, 1986 25th IEEE Conference on Decision and Control.

[3]  G. A. Baker Essentials of Padé approximants , 1975 .

[4]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[5]  B. Dickinson,et al.  Efficient solution of covariance equations for linear prediction , 1977 .

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  Will Gersch,et al.  Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series , 1970 .

[8]  Joël Le Roux,et al.  An iterative procedure for moving average models estimation , 1980, ICASSP.

[9]  H.K. Kim,et al.  Theory of electrical filters , 1978, Proceedings of the IEEE.

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Bradley W. Dickinson,et al.  Application of the lattice filter to robust estimation of AR and ARMA models , 1988, IEEE Trans. Acoust. Speech Signal Process..

[12]  Tryphon T. Georgiou,et al.  Linear fractional transformations and spectral factorization , 1986 .

[13]  S. Li,et al.  A comparison of two linear methods of estimating the parameters of ARMA models , 1989 .

[14]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[15]  P. Stoica On a procedure for testing the order of time series , 1981 .

[16]  Y. Chan,et al.  A new order determination technique for ARMA processes , 1984 .

[17]  J. C. Chow On estimating the orders of an autoregressive moving-average process with uncertain observations , 1972 .

[18]  W. Rogosinski,et al.  The Geometry of the Zeros of a Polynomial in a Complex Variable , 1950, The Mathematical Gazette.

[19]  G. C. Tiao,et al.  Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models , 1984 .

[20]  Howell Tong Autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[21]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[22]  S. Uṇṇikrishṇa Pillai,et al.  Spectrum Estimation and System Identification , 1993 .

[23]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[24]  S. Unnikrishna Pillai,et al.  ARMA-System Identification and Rational Approximation , 1993 .

[25]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[26]  Daniel Graupe,et al.  Identification of autoregressive moving-average parameters of time series , 1975 .

[27]  V. Belevitch,et al.  Classical network theory , 1968 .

[28]  Robert W. Newcomb,et al.  Linear multiport synthesis , 1966 .

[29]  The estimation of parameters for autoregressive-moving average models from sample autocovariances , 1979 .

[30]  Anthony L Bertapelle Spectral Analysis of Time Series. , 1979 .

[31]  J. Cadzow,et al.  High performance spectral estimation--A new ARMA method , 1980 .

[32]  R. Kashyap Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .

[33]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[34]  Dante C. Youla,et al.  Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle , 1978 .

[35]  H. Akaike Statistical predictor identification , 1970 .